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Abstract

Inspection is a ubiquitous challenge, from bridges to farm fields to space stations. These tasks are

typically dirty, dull, and dangerous, making them ideal candidates for automation. Researchers have

already begun to develop algorithms for robotic inspection, but they are typically limited to a few

robots performing planned coverage paths with global communication and centralized computa-

tion. This creates a single point of failure and scales poorly for larger groups and environments.

In contrast, non-inspection research in swarm robotics has developed algorithms for large groups

of simple robots with limited sensing and communication, with distributed computation. How-

ever, many swarm algorithms solve tasks that share essential features with inspection: robots must

(1) move through the environment, (2) sense a feature of their environment, and (3) map those ob-

servations to a classification. In this dissertation, I focus on closing the gap between inspection tasks

and swarm robotics by developing distributed algorithms to solve two types of inspection tasks:

global classification of the state of an environment, and locating faults within an environment.

I present two algorithms that allow a group of simulated Kilobot robots to perform binary clas-

sification of a black-and-white world and create a committed collective decision. These algorithms

can be conducted without localization or coverage, and with low-bandwidth, small range commu-

nication. First, I demonstrate a bio-inspired algorithm built on quorum sensing and honey bee wag-

gle dances, which I also extended with a task-switching strategy to classify multiple color features.

Second, I show a Bayesian algorithm to solve the single-feature case, which provides a statistically-

grounded strategy that incorporates uncertainty by modeling the world as a distribution.
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For robotic target localization, I present a hybrid algorithm built on particle swarm optimization

(PSO) to allow simulated robots to locate a value below a threshold in a continuous, monochrome

world. I introduce a variable update rate to PSO to improve fault detection, and a dispersion-based

movement to share information through the group. The robots are able to achieve a detection

success rate comparable to coverage, but without needing to visit the whole environment. I also

demonstrate that fault detection with a robot swarm can be applied to the real-world problem of

space station fault detection. I employ a related PSO-based algorithm that allows soft-bodied Fer-

robot robots to detect multiple vibration sources in a physics-based simulation, and demonstrate

that the locomotion and vibration detection can be achieved by real robots in microgravity.

As infrastructure ages and robots become more capable, we can employ collective robotics to

ensure safety through inspection. This dissertation demonstrates that we can create robust, inter-

pretable inspection algorithms for large groups of simple robots, without relying on centralized

computation or planned coverage. It also shows how a complex task such as inspection can be bro-

ken down into fundamental swarm behaviors to make a problem easier to solve; this can serve as an

example for using robot swarms to solve other complex real-world tasks.
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1
Introduction

Imagine a space station in orbit: a feat of engineering responsible for supporting the life of its

human inhabitants. To do so, the space station must retain structural integrity, free of leaks and

defects that could cause a failure of the hull. In the harsh environment of space, the exterior is con-

stantly subjected to potentially damaging debris, and regular inspection can ensure that structure

remains safe. Currently, however, this would require sending a human on a space walk around the

1



Chapter 1. Introduction

station to perform a visual inspection— a dangerous and time-consuming task.

However, an alternative solution is on the horizon: using groups of robots for inspection. On a

space station, these robots can operate autonomously while the humans remain safely inside. They

can also use additional sensing modalities, such as ultrasound or vibration sensing, and they could

perform inspections faster and more frequently than the astronauts. This could catch any faults

early, preventing expensive or dangerous damage to the space station. Inspection with robot collec-

tives can make space safer for astronauts, but it also has the potential to ensure safer infrastructure

here on Earth in a variety of domains, if we develop the right algorithms to enable intelligent, au-

tonomous robot inspection behaviors.

1.1 Motivation

Inspection is a ubiquitous challenge, from ensuring the safety of a bridge to evaluating a

potential construction site. These are examples of, respectively, finding faults within a known space

and classifying a relevant feature of an unknown area. These tasks tend to be dirty, dull, and dan-

gerous— the trifecta that makes them ideally suited for robotic automation. As a result, researchers

have already begun to develop robotic solutions for a broad range of inspection challenges, such as

power lines1,2, bridges3, agriculture4, pipelines5, and other infrastructure6. Using robots for in-

spection is particularly important in locations that humans cannot reach (e.g., Mars), cannot inspect

safely (e.g., hazardous material leaks), or where a task would be particularly time-consuming (e.g.,

large coverage area).

While robotic inspection covers a broad variety of tasks, all require that the robots (1) move

through their environment to (2) sense it, and then (3) map those observations to a classification

of the environment. Inspection tasks often require covering large areas, such as a network of power

2



Chapter 1. Introduction

Global: Classification Local: Target Search

Inspection

Figure 1.1: Inspecঞon tasks can be broadly categorized as global classificaঞon of an environment (le[), such as deter-
mining the suitability of a habitat site on Mars; or locaঞng a target within an environment (right), such as finding faulty
locaঞons on a bridge. In the bo�om row, we see abstracঞons of these problems: classifying an environment as mostly
black or mostly white (le[), and finding a posiঞon with a value below a threshold (right). (Images courtesy of NASA/JPL7

and the Washington State Department of Transportaঞon8.)

lines1,9,10 or a farm field11,12,13, which are significantly larger than the inspecting robot. Currently,

this is typically done using complex, purpose built robots planning a coverage path through the en-

vironment, then executing it14,15,16. These tasks are completed either by a single robot, or a small

group of tightly coordinated robots. Current inspection-focused research also focuses on inspecting

for a single feature in the environment, such as identifying cracks, rather than investigating multiple

features in a single inspection run.

Using multiple robots can reduce the time to complete an inspection task, but movement coordi-

3
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nation and data ingestion is generally done centrally, rather than distributed among the individual

robots17,18. This can create a capable collective, but it relies on certain strong assumptions. Namely,

all robots must be capable of global communication, as well as precise, coordinated movement to

meet the coverage guarantees. In many cases, the target of global coverage may not even be neces-

sary to identify certain types of faults, such as the source of leaks19,20,21, but there are not currently

any standard approaches within the inspection literature that use non-coverage movement algo-

rithms22,23,15,16,24. If any member of the group fail — either the central computer or any of the

individual — then the inspection task will fail to be completed as planned. A multi-robot system

could also facilitates multi-feature inspection, by allowing efficient, dynamic allocation of robots

between tasks; this has so previously been investigated in swarm robotics25,26,27, but thus far it has

had less investigation within inspection research12.

Instead of complex, centralized robotic inspection systems, we can draw on algorithms in the

robotics literature developed for non-inspection tasks. Here, we see a swarm robotics approach

that can be applied to inspection tasks: large numbers of simple robots with limited sensing, com-

munication range, and communication bandwidth, where computation and decision-making is

distributed across all individuals, rather than centralized28,29. Many of these approaches are bioin-

spired, creating decision-making algorithms based on nest site selection in insects30,31,32,33 or lo-

cating optima in an environment with variations on particle swarm optimization (PSO)34,35,36. A

distributed approach provides certain advantages over a centralized system comprising fewer, more

capable individuals; it is more robust to failures of individual robots, parallelization across more

robots can speed up inspection, and the simplicity of the individuals makes them simpler to pro-

duce37,38. However, decentralization introduces challenges for coordinating movement and sharing

information, especially when there is no global communication between robots.

In order for a group of robots to collectively inspect their environment, they must also move

beyond individual decisions, to reaching a collective decision as a group. Inspection requires that
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robots achieve committed, or “locked-in” decisions from the group of robots. However, the current

robotic collective decision-making literature commonly aims to achieve only a transient consensus

among the group39,40,41,42. Collective decision awareness will allow the robots to chain tasks to-

gether, such as repairing a fault themselves or returning to a collection point, or communicate the

inspection results to a human. There is also typically a speed-accuracy tradeoff in such decision-

making: the goal is for all robots to reach the same, accurate decision as quickly as possible.

To solve these problems, I divided inspection tasks into two categories that align well with exist-

ing robot algorithm literature, as shown in Fig. 1.1. This division is explained further in Chapter

2. First, there are global inspection tasks, which require classifying a site or environment. This can

include determining if a site onMars is suitable to construct a human habitat, or checking whether

a lake is polluted. In each case, the robots classify one of more features of the environment from

samples taken while moving through their environment. In many cases, this takes the form of a

“go/no-go” problem: each robot must select the best of two possible choices based on some incom-

plete information available to them. In the case of Martian site inspector, this could mean determin-

ing whether the site has stable enough ground and whether there is enough water. Even groups of

very simple robots are capable of completing this type of task, without localization and with very

small communication ranges. To develop algorithms for site classification, we can abstract this prob-

lem to a color-based feature, shown in the bottom left of Fig. 1.1. Here, the robots must determine

whether the arena is filled with mostly black or mostly white.

Second, there are local inspection tasks, where the robots’ goal is to determine the location of a

target within an environment, such as the location of faults on a bridge. These tasks require that

the robot sense a feature through the environment and find positions where the value is past a cer-

tain threshold, which means the robots also must possess some method of localization within the

environment. For bridge inspection, this might mean identifying where too much rust is present or

where cracks are too large. The feature under investigation often has a non-convex distribution or
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cannot be well-modeled. To guarantee locating the global minimum, the optimal solution is exhaus-

tive coverage43. In many real-world situations, though, a location with a value past a threshold can

be identified with non-coverage search algorithms. Like the global classification task, this problem

can also be abstracted to represent any scalar feature using grayscale, as seen in the bottom right of

Fig. 1.1, where robots locate a value close to the global minimum.

In my dissertation, I designed algorithms to solve both the classification and localization classes

of inspection algorithms. These algorithms demonstrate a variety of different approaches to solv-

ing collective perception and decision-making problems, including an insect- and bacteria-inspired

classification algorithm, Bayesian modeling of an environment, and hybrid combinations of exist-

ing algorithmic components to create new collective behavior. This work represents an important

advance in understanding how to utilize collectives of robots for the real-world challenge of inspec-

tion, including the trade-offs involved in both algorithmic and swarm design.

1.2 Contributions

Mywork makes four main contributions to the area of collective robotic inspection: first, algo-

rithms for global site classification; second, an algorithm for target localization; third, a demonstra-

tion of collective robotic space station inspection; and fourth, a simulator for investigating large-

scale swarm behavior;

1. Design algorithms to accomplish single- and multi-feature site evaluation with simple

robots. I present two distributed algorithms for site classification. I developed a bioinspired

algorithm based on quorum sensing that allows a group of simple robots to make binary clas-

sifications of multiple features of their environment, demonstrated in both simulation and

on Kilobot robots. I also created a Bayesian decision-making algorithm for site classification,

resulting in faster, statistically-grounded decision-making. This work showed that simple
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robots are capable of highly accurate inspection, even at modest densities relative to their

environment scale.

2. Design an algorithm to achieve fault target search and decision awareness. I present an

algorithm to locate a target in an environment with a continually sensed cue. This is repre-

sentative of many inspection tasks requiring detecting the location of a fault by identifying

a location where a feature value is past a safety threshold. My algorithm demonstrates the

power of combining algorithm components in a computationally and physically distributed

robot system— such as particle swarm optimization, flocking, and dispersion— to achieve

collective detection and awareness of a fault target, without requiring coverage or precisely

coordinated robot movement.

3. Demonstrate the potential application of swarm inspection for space station fault de-

tection. Moving beyond abstract monochrome cases, I collaborated with anMIT-Harvard

team to employ the above concepts toward a real-world application scenario: inspecting the

exterior surface of the space station. First, we showed how a collective algorithm can be used

to identify multiple vibratory faults in a 2.5D physics-based simulation. Second, we validated

the simulation assumptions by showing that real soft-bodied robots in microgravity can de-

tect characteristic vibrations and move efficiently on steel surface.

4. Develop a simulator capable of handling the large scale simulations necessary for al-

gorithm development and analysis. To facilitate the development of swarm algorithms,

I developed Kilosim, an abstracted simulator capable of quickly simulating large groups of

arbitrary robots. This simulator was designed for scale, simulating up to hundreds of robots,

and speed, simulating at up to 1000× realtime. This allows for more rapid algorithmic itera-

tion than in physical hardware, as well as detailed study of the impacts of robot features and

parameter choice.
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Together, these contributions advance the capabilities of robotic inspection: develop new algo-

rithmic approaches to multiple types of inspection tasks while connecting swarm robotics literature

to the real-world challenge of inspection.

1.3 Outline

This dissertation is organized into eight chapters:

Chapter 2—RelatedWork: Discusses prior work on robotic inspection and relevant algo-

rithmic research on multi-agent decision-making. It also situates collective robotic inspection within

the taxonomy of multi-agent behavior.

Chapter 3—Kilosim: AHigh-performance Robot Swarm Simulator: Introduces a

custom simulator created for studying large multi-agent collectives, including Kilobots. This simula-

tor is used for work through the rest of this dissertation.

Chapter 4— Bioinspired Site Inspectionwith aMinimal Swarm: Presents a bioin-

spired algorithm for allowing a swarm of Kilobot robots to classify multiple binary color features of

their environment, including task switching.

Chapter 5— Bayesian Site Inspectionwith aMinimal Swarm: Presents a statistically

validated Bayesian algorithm for binary environmental classification in simulated Kilobots, demon-

strating a performance improvement over the previous bioinspired approach.

Chapter 6—AHybrid PSO Algorithm forMulti-robot Target Search andDeci-

sion Awareness: Presents a hybrid PSO-based algorithm for locating a fault target within a
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monochrome environment and disseminating this information through the group to achieve collec-

tive decision awareness.

Chapter 7—Decision-making Applied to Space Station Fault Inspection: Demon-

strates the application of swarm inspection to detecting vibratory faults on a space station surface,

including physics-based simulation of multi-fault detection and validation of robot hardware in

microgravity.

Chapter 8—Conclusions and FutureWork: Concludes and discusses future work,

including further development toward solving real-world inspection tasks.
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A robot may not injure a human being, or, through

inaction, allow a human being to come to harm.

Isaac Asimov

2
RelatedWork

Inspection is a pervasive challenge across many domains, from outer space to factory ma-

chinery to environmental monitoring, but it has so far received only limited explicit attention in

robotics research, particularly for multi-robot approaches. Research thus far has focused on partic-

ular applications, such as pipeline or inspection, rather than broad algorithmic understanding of

the domain. However, other work within multi-robot algorithms research is not explicitly framed
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as inspection, but nevertheless solves similar or related problems and could be applied to inspec-

tion. If we understand what characterizes an inspection task, we can then apply and adapt existing

algorithms work to inspection problems.

In this chapter, I present robotic inspection research that allows us to define what features make

a task an inspection task. With a definition of inspection, I then identify and related work in the

multi-robot literature that does not describe itself as solving inspection tasks, but nevertheless

solves tasks that meet our definition of inspection. Finally, I situate multi-robot inspection within a

broader taxonomic understanding of multi-robot behaviors.

2.1 Defining Robotic Inspection

Inspection tasks vary broadly across many axes — for example: in environment, from agriculture11

to space stations44; in feature modality, frommagnetic flux45 to computer vision-based optical ob-

ject assessment4; and in the detecting agent, from a single fixed sensor to a robot swarm. Therefore,

characterizing inspection tasks requires abstracting from the specifics of an individual case and rec-

ognizing the features that are consistent across these scenarios, and relevant sub-categorization of

types of inspection tasks. In short, we must identify: What features make something a robotic in-

spection task?

Below, I present three features identified from literature that characterize robotic inspection

tasks: sensing, classification, and mobility. I also present a categorization of inspection into two

sub-tasks based on the task goal.

2.1.1 Environmental Sensing

The first feature of an robotic inspection task is that it requires the agents to sense at least one fea-

ture of the environment being inspected. This follows naturally from the definition of inspection
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more broadly, and is observed consistently across the robotic inspection literature.

Different sensing modalities are used in different inspection regimes, depending on the feature

under investigation. These are generally non-destructive evaluation (NDE) techniques, which allow

for regular investigation without creating damage in the process of testing. Large scale infrastruc-

ture, such as bridges or dams, are concerned with the structural integrity of the constituent com-

ponents. Ultrasound can detect rusting bridge supports with different responses to thick or thin

supports46. Magnetic flux can detect variations in ferromagnetic materials that indicate faults, such

as thinning bridge cable-stays47 or pipe leaks45. Hot spots in power lines can indicate failures due to

high resistance10.

One of the most common inspection sensing modalities across domains is image and video

data, since many faults are visible at the surface. This modality has been used for many inspection

domains, such as power transmission lines1, tunnels48, building construction49, bridges50, and

pipelines5. However, the processing of this image data varies dramatically by domain.

In some cases, multiple sensor modalities can be employed toward a single inspection goal. For

example, the BETOSCAN system investigates reinforced concrete using many sensor modalities,

including ultrasound, microwaves, optical analysis, and concrete resistance51. This is particularly

beneficial for systems where there are different constituent components, like the rebar, cement, and

aggregate of reinforced concrete. To detect both surface and subsurface faults, robots can combine

visual surface inspection with subsurface sensing, like vibration or sound52.

2.1.2 Mapping Sensing to Classification

What next distinguishes an inspection task is what happens to the sensed data. For inspection, the

data is processed into a meaningful output: classifying the quality of the feature. Often, this takes

the form of a binary classification: Is this faulty or healthy? However, further classification is possi-

ble, such as determining the magnitude of a fault.
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The difficulty of mapping sensor data to classifications depends on the type of sensor data, as

well as the task complexity. For example, Yu et al. 48 were able to identify cracks in a tunnel wall

from camera data, which is often a difficult sensor modality, but the task was simplified by high con-

trast between cracks and uncracked walls. Temperature sensing on power lines is a one-dimensional

signal with clear fault thresholds, resulting in straightforward classification10. More complex sensor

data results in a more difficult sensor-to-classification mapping, which draws on traditional signal

processing techniques, like wavelet decomposition of audio data52.

More recently, this mapping has been achieved through machine learning techniques. With com-

plex visual scenes, or when sensor fusion is required, traditional sensor fusion and hand-rolled tech-

niques are insufficient and can fail to reach the accuracy of a human inspector. Machine learning

has been employed to detect scratches on machine components from photos using naive Bayes clas-

sifiers53, and modern convolutional neural networks (CNNs) were used to identify surface imper-

fections54 and multiple types of defects on rail tracks55.

Note that there are some cases of inspection that meet the first criteria for robotic inspection

(robotic sensing), but the assessment of this sensor data is conducted by a human, as in Kawaguchi

et al. 56 . We do not consider this to be a fully robotic inspection task, because the inspection is not

happening autonomously. Similarly, it is possible for sensor data to be collected by autonomous

robots, but it is only processed offline, after the robots have left the space. While this does not re-

quire human assessment, it does not represent self-contained robotic inspection.

2.1.3 Robot Mobility

The ability for an agent to sense and classify its environment are essential features of inspection, but

this does not distinguish a static sensor or static sensor network from robotic inspection; robotic

inspection is differentiated by the autonomous mobility of the agents. Within inspection, mobile

sensors and mobile wireless sensor networks (MWSNs) typically meet this requirement, provided
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that the sensors locomote, instead of being passively moved by their environment57. Here, we do

not consider the modality of locomotion, but rather the choice of where and how to move, such as

path planning, random walks, or reactive movement.

Coverage path planning (CPP) approaches provide a method to guarantee that an environment

or structure has been fully inspected, and can be either pre-computed offline, or online in an un-

known environment22. Such techniques are typically used to provide a complete reconstruction

of an environment for outside assessment, and are evaluated on the completeness of the coverage,

rather than evaluating whether the robots visited the most consequential locations within the en-

vironment16. The most common CPP approach for inspection is conducting a boustrophedon

search, or a sweeping zig-zag path through the environment, but this problem is NP-hard in the

general case, even before accounting for obstacles in the environment22,58. Various approaches

to achieve near-optimal coverage have made this problem tractable, such as cellular decomposi-

tions59,60, grid-based environmental models61, and landmark-based topological coverage62,63.

However, these remain computationally intensive and performance degrades in the presence of

often-inevitable uncertainty in sensing and localization64,65,23.

There are alternatives to path planning coverage. With time constraints, it is instead possible to

create prioritized waypoints and solve a version of the traveling salesman problem14, or employee

ant colony optimization to plan good-enough path66. If heuristics are available, it is also possible to

employ path planning techniques such as variations on A*; Lai et al. 67 designed center constraint

weighted A* (CCWA*) to inspect a petrochemical plant with reduced computation required for

such a large environment.
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2.2 Categorizing Inspection Tasks

There is a wide variety of tasks that have all three features of robotic inspection described above. For

example, a robot may be tasked with locating cracks in a pipe, identifying whether there are insects

in a farm field, or detecting high resistance sections of power lines. However, I propose that these

varied tasks can be broadly placed into two categories:

• Global classification: Categorize an entire site or environment. For example: Is the ground

at this site stable?

• Target search: Find the location of any faults or sites of interest in a large area. For example:

Locate the cracks in a surface.

There is, in fact, a spectrum between these two cases: for example, to inspect and classify sub-

regions of a full environment, rather than the extremes of the whole space or a discrete point. How-

ever, for the purposes of clarity within this dissertation, I will focus on these distinct cases.

2.2.1 Global Classification Inspection

The goal of global classification inspection is to classify an entire site, region, or environment based

on one or more spatially distributed features observed within it. Regardless of the distribution of

this feature within the area, a single global classification will be reached for the whole area. Note

that, for this to be a robotic inspection task, the area must be larger than can observed and classified

by a single static; otherwise, it is not a robotic inspection task, as there is no mobility involved. For

robots to solve this problem, they either need to see the entire site (i.e., coverage), or they need to

observe enough of the cite that they are collectively sufficiently confident to make a decision about

its state.
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There are many types of global site inspection, many of which are not yet conducted by robots,

such as assessing topography and climate68, forest ecology69, and seismic conditions at building

sites70. We also observe this type of inspection in insects, where they must assess the quality of a po-

tential nest site71,72, which has also been applied to robotic systems32,73. Thus far, however, explicit

robot site inspection exists primarily in the agriculture domain74,11,75 — for example, to assess rice

farm crop quality76 or fruit yield estimation77

2.2.2 Target Search Inspection

In algorithmic research, the term “target search” covers a broad class of problems, including targets

that can be dynamic, moving, and intelligent78. Here, we use the term to refer specifically to the

types of target search that is encountered in inspection-type tasks: where the target is (1) in a fixed

location (a fault will not migrate around the structure or environment), and (2) quasi-static (i.e., we

do not anticipate significant changes within the duration of a single inspection).

Target search is the predominant form of inspection in the literature, comprising both single- and

multi-target searches. For example, Yu et al. 48 sought to identify the locations of any tunnel cracks,

and Jiang et al. 10 found the positions of high-resistance, high-temperature points along power trans-

mission lines. It is also possible to locate multiple classes of faults. Inoue et al. 52 employed wavelet

decomposition of auditory data to identify two types of faults in tile walls — tile separation and

layer separation— as well as locations where both faults were present.

2.3 Multi-robot Inspection Considerations and Possibilities

Using multiple robots for inspection provides additional sensing capabilities, but it introduces addi-

tional challenges for all three of the above components of components of inspection: observations

and classifications must be communicated throughout the group, and movements of individual
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robots must be coordinated. This can be with a centralized controller, or distributed across the indi-

vidual agents. When many simple robots are used with fully distributed control, this is considered a

robot swarm28,29.

Multi-robot inspection is a form of collective decision-making: robots acquire observations from

their individual distributed sensors, fuse this information into a decision, and then communicate

the decision across the group to reach a common decision. In the case of centralized control with

global communication, these processes can all be conducted by a single computer using all knowl-

edge acquired in the system. This reduces the required algorithmic complexity, but it decreases ro-

bustness by introducing a single point of failure and requiring robots to be within communication

range of the single central controller for many operations17,18. In contrast, decentralized control

requires coordination among all individuals, even if they have global communication. However,

many simple robots used in swarm-scale applications have limited communication ranges and band-

width79,80,81. This results in cheaper robots with lower energy requirements, but further increases

the algorithmic challenge for information sharing and coordination.

When considering mobility in multi-robot inspection, the challenge expands to include coordi-

nating robot movements. This makes offline planned paths— particularly coverage— less reliable,

and coordinating online path planning is unreliable if communication is limited. Coverage algo-

rithms have been proposed for multi-robot inspection, but they typically fail to consider the chal-

lenges of physical coordination17 or communication and where the computation occurs15,24. They

assume that robots are able to precisely follow arbitrary paths and do not consider the failure of cov-

erage if this requirement cannot be met. These algorithms must also either be computed by a central

controller with global communication, or additional complexity must be added for these algorithms

to be computed decentralized. In either case, their assumptions are not met if global communica-

tion is unavailable. As a result, non-coverage and less planned movement (i.e., reactive movement)

is more common in multi-robot inspection82. It is also possible to combine planned and reactive
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movement, as Nejadfard et al. 18 demonstrated by planning one robot’s movement with quadratic

programming, then coordinating the positions of additional dome-inspecting robots using particle

swarm optimization. However, there has thus far been limited research on multi-robot movement

that is explicitly presented as inspection.

While research in inspection has generally focused on small groups of capable, centralized robots,

research in swarm robotics has been developing distributed algorithms for tasks that are not called

inspection, but nevertheless possess all three of the features specified above. Therefore, we can begin

to apply distributed swarm algorithms to inspection problems. By developing algorithms for robot

swarms, we will have the algorithmic capabilities necessary to successfully deploy simpler, cheaper,

more robust robot collectives for inspection.

2.4 Algorithms for Multi-robot Global Classification

The task of global classification often takes the form of a “go/no-go” choice about one or more fea-

tures of the environment: robots must select the best of two possible choices based on some incom-

plete information available to them. In swarm robotics, this challenge requires all robots quickly

and accurately come to the same decision.

Swarm robotics often draws inspiration from biology for such distributed classification prob-

lems, since binary decisions are common in biology. Insect-based algorithms are inherently de-

centralized and scalable, making them well-suited for robotic collectives. Honeybees and ants are

known for house-hunting, in which the entire colony must select between multiple possible new

nest sites or risk splitting the colony30,83,72,71,84,85. These strategies typically use random pairwise

interactions and positive feedback to push the group to a decision, in which higher-quality options

are more heavily communicated and more visited, pushing the colony to consensus. In particular,

a cross-inhibition mechanism was identified as a key for successful collective decision-making in
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bees86, and ants commonly use stigmergic pheromone trails to drive consensus87,88.

Several groups have explored robotic decision-making inspired by insect house-hunting. This ap-

proach proved effective in a house-hunting task completed by Kilobot robots31,32. At any moment

in time, each robot has an opinion about which option is best. The robot either explores the option,

or exchanges information with its neighbors. In the latter case, the robot locally broadcasts its opin-

ion for a duration that is proportional to the perceived quality of the preferred option, analogous

to the honeybee waggle dance. The robot also monitors incoming messages for a fixed time period,

and then updates its opinion using the majority rule. The robot then switches to exploring the po-

tentially new option, and the process repeats indefinitely. The results showed that the collective

approaches consensus with high accuracy.

Recently, Valentini et al. 41 studied a modified version of the collective decision-making problem

on a robotic system, in the form of feature detection. The agents are able to sense color in a black-

and-white environment and are required to estimate whether the environment contains more back

or white area. Each agent makes individual estimates of the feature and shares it globally with all

other agents (i.e., communication is global). The agents then aggregate the estimates of other agents

to form a belief about which color is more prominent. Several aggregation mechanisms were in-

vestigated in simulation and on a group of 20 e-puck robots, resulting in different speed/accuracy

trade-offs.

One limitation of the work in41 is that it relies on global communication, whereas collective

systems in nature exploit the use of only local communication to achieve scalability89. Moreover,

the work in41 —as well as all the others mentioned above— only investigate the case where the

collective is asked to make a single decision. However, collective systems in nature are capable of

handling multiple tasks simultaneously, adaptively allocating individuals as required to complete

these tasks87,90,91,92.

Other groups have studied the collective perception and decision-making problemmore broadly
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as a “best-of-N” task where robots decide betweenN ≥ 2 options, emphasizing the techniques

used to ensure collective agreement on the result. Parker and Zhang 73 studied a scenario in which

a group of robots is expected to choose the best out of a number of unequal options. The robots

employ an active recruitment strategy that relies on inter-robot communication. The robots start

by looking for options and advocating them to each other, always switching their selection to the

best of the known options. Once a robot’s selection becomes sufficiently popular (reaching a quo-

rum), the robot becomes committed to it. This enables the group to reach a consensus where all

robots have locked in decisions. Hamann et al. 33 studied how a homogeneous group of robots can

collectively choose between two global maxima in a light-intensity field. In their algorithm, each

robot moves in a straight line until it encounters another robot. Then, it stops and counts the total

number of robots in its neighborhood. If this is above some threshold, the robot measures the light

intensity and waits for a time proportional to this intensity. This creates a positive feedback effect

which enables symmetry breaking between the two options.

In inspection tasks, it is not sufficient to simply approach consensus. At some point, the decision

must be ‘locked in’, allowing the collective to move on to the next task; for example, the bees or ants

must start emigrating and moving their larvae to the new site. In the context of bacterial colonies,

this process is known as quorum sensing93,94. When the concentration of an extracellular signaling

molecule produced by the bacteria crosses a threshold, the colony can move from stasis to an active

state.

In contrast to a bioinspired approach, it is also possible for robots to make a committed deci-

sion using statistical models to make probabilistic guarantees about decision accuracy. Bayesian

algorithms provide a statistically grounded approach to this challenge, particularly when fusing

data frommultiple agents in distributed sensor networks and multi-agent systems. Many agents

collect samples of information that must be integrated to form a single estimate or decision. Early

approaches involved distributed sensors, but decision-making was centralized95. More recently,
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decentralized Bayesian information fusion has been successful across a variety of domains, such as

target tracking96, source localization97, self-localization98, and event classification99, demonstrat-

ing its broad applicability across tasks and domains. While many of these approaches scale across

the number of agents100, they often rely on assumptions such as maintaining a fixed or strongly

connected network101, or their goal is continuous state estimation, rather than a go/no-go decision.

2.5 Algorithms for Multi-robot Fixed Target Search

Search and localization problems are pervasive in robotics, though often not explicitly presented as

inspection tasks. One common framing is gas source102,103,104 and odor source localization105,106,107.

The framing of these tasks reflects a breakdown of inspection search tasks more broadly, where the

problem is viewed as three sub-tasks108,105,109: (i) cue finding,where the relevant signal (or change

in signal) is first detected; (ii) cue tracing,where some strategy is used to follow that signal; and (iii)

source declaration,where a location is determined to be a source (or in inspection, parlance, a fault).

Perhaps the simplest source search strategy tracing a cue with gradient descent110; when used

in the context of following a chemical trail, this is chemotaxis111. In its pure form, this reactive ap-

proach is possible only if the signal can be detected at all points in the environment, it distribution

is convex, and if the agents are capable of sensing a gradient. In some cases these limitations can be

overcome by generating a pseudo-gradient, such as by using multiple sensors103,112, but can still be

thwarted by highly non-convex or sparse signals in the environment.

When a feature can only be sensed intermittently, but can be modeled, this model can be used in

a probabilistic search algorithm105. One common such strategy is following information gradients

to find an odor source using infotaxis113,114,107 Simple approaches such as a reactive, gradient-based

chemotaxis cannot be used because of the complex flow pattern and intermittent sensing of scent

particles. Instead, the agent employs a model of the behavior of scent particles to predict that any

21



Chapter 2. RelatedWork

location in the environment is the source. Notably in this strategy, the agents do not move directly

to the most likely source location, but rather, as the infotaxis name suggests, in the direction that

will maximize the expected information gain (or reduction in entropy). This results in wide sweep-

ing behaviors, similar to that observed by moths115. However, this approach relies heavily on an

accurate model of the environment and particle behavior. If the model diverges too strongly from

reality, the success at finding the source drops dramatically. It also requires maintaining and up-

dating a probability distribution for the likelihood that every cell is the source, which scales poorly

with larger environments. While this model was first developed for a single agent, it has since been

extended to distributed multi-agent variations by adapting agent behavior and source likelihoods

based on the intersections of their respective distributions116,117. Notably, however, some multi-

agent adaptations require that agents require maintaining a connected graph118; when robots are

sparse or have limited communication range, this is a non-trivial requirement.

When an environment cannot be modeled and is too complex for reactive approaches, this leaves

heuristic search strategies. The most commonmulti-robots heuristic approaches are built on vari-

ations particle swarm optimization (PSO). In the original form of PSO, abstract particle agents

employ a biased random walk toward their individual and collective best observations, resulting in

non-guaranteed convergence at a global optimum119. PSO has been applied to real multi-robot sys-

tems;34,120 demonstrated that PSO could be used to identify a source with convex feature distribu-

tion, despite limited movement speed and communication range. There are also hybrid algorithms

that incorporate PSO into their search, including hybrid ant colony optimization (ACO/PSO),

where virtual pheromone deposits augment direct communication35; PSO plus fruit fly optimiza-

tion (MFPSO) to avoid local minima and improve search speed36; and adaptive robotics PSO (AR-

PSO), which considers obstacle avoidance and a mechanism to escape local minima.

These search strategies typically have one of two possible stopping conditions: (1) when a single

robot has located the target, or (2) in PSO, when all robots converge at the target. Without global
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communication, the first termination condition does not consider knowledge across the rest of

the collective. PSO-based convergence requires all robots to identify the target by travelling to the

location, rather than learning indirectly by communication. Without global communication, this

limits the reach of the already-converged robots to aid convergence of the remaining robots.

To disseminate knowledge of the target without requiring convergence, robots could travel as

a connected network. This can be accomplished with distributed spanning trees121 or creating a

k-connected network to maintain at least k neighbors122. Both of these algorithms can guarantee

maintaining a network, but they are computationally heavy and unrealistic to implement on simple

robots. A simpler alternative is Boids flocking123, where robots create a flock with a target neigh-

bor distance smaller than their communication range. This creates a looser, easier to implement

network, though without guarantees.

2.6 Inspection within Multi-agent Behavior Taxonomy

As research and applications of multi-robot systems have grown, researchers have endeavored to

develop a systematic, hierarchical classification of their fundamental behaviors. This evolving un-

derstanding of multi-agent behavior provides a lens through which to structure and compare varied

framings of similar behaviors. Understanding the basic underlying behaviors allows for more in-

tentional design of complex, application-oriented behaviors such as inspection and repair tasks.

Multiple iterations of swarm behavior taxonomy have been proposed26,81,89, generally building on

the prior versions. The most recent version, proposed by Schranz et al. 81 in 2020, is shown in an

adapted form in Fig. 2.1.

Within the taxonomical framework, it becomes apparent that inspection is a complex task com-

prised of multiple behaviors. Noted in green in this figure, inspection requires both collective explo-

ration and collective perception— that is, they must move through the environment to collectively
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Swarm Behaviors

Spatial Organization

Aggregation

Pattern Formation

Self-assembly

Object Clustering and Assembly

Miscellaneous

Self-healing

Self-reproduction

Human-swarm Interaction

Navigation

Collective Exploration
Coordinated Motion

Collective Transport

Collective Localization

Decision-making

Consensus

Task Allocation

Collective Fault Detection

Collective Perception
Synchronization

Group Size Regulation

Figure 2.1: Taxonomy of swarm behaviors, adapted from Brambilla et al. 89 , Schranz et al. 81 . Behaviors essenঞal for
collecঞve inspecঞon are in bold green. Behaviors that could be applicable to collecঞve inspecঞon in some contexts are
in blue.

make their observations, and then combine those observations into a larger decision. By recognizing

that inspection is composed of multiple types of behaviors, we can draw on the algorithmic litera-

ture from these areas to develop new approaches to solving inspection tasks.

In many cases, however, additional swarm behaviors from this taxonomy may improve inspec-

tion, or be necessary for certain inspection tasks; these are noted in blue in Fig. 2.1. Typically, a real-

world inspection task will begin with a problem, then look for tools to solve it; this taxonomy can

be used to identify sub-problems within an inspection task, then look for existing approaches in the

literature that solve these sub-problems, rather than creating a new solution from scratch for every

new inspection problem.

For example, it may be necessary for a human to command a robot swarm to inspect, or for

robots to report their findings to a human for further action to be taken (e.g., to repair a discovered
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fault or report that no faults were found). This is a straightforward form of human-swarm interac-

tion. In Chapter 4, we demonstrate how task allocation can allow a swarm to conduct multi-feature

inspection. In Chapter 6, we show how flocking, a form of collective movement, affects propagation

of information through a robot swarm. If the task goal is a target search problem (as defined in Sec-

tion 2.5) but the robots do not natively have a coordinate system, collective localization allows the

group to establish a local coordinate system to establish target locations.

A behavioral taxonomy provides a framework by which we can break down complex inspection

tasks into fundamental behaviors, then identify how to leverage existing solutions toward the larger

task goal. Within these categories, it is also possible to develop new behavioral solutions designed

for inspection, but which can in turn be leveraged for other swarm behaviors. The swarm behavior

taxonomy provides a modular framework through which to view complex behavior, potentially

simplifying the development of algorithmic approaches to a variety of real-world swarm robotic

application.
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To me programming is more than an important practical

art. It is also a gigantic undertaking in the foundations of

knowledge.

Grace Hopper

3
Kilosim: AHigh-performance Robot

Swarm Simulator

Implementing collective robotic algorithms in physical robots is important to under-

stand all of the nuances of their behavior, and how they operate in the context of real-world noise

and variability that cannot easily be modeled. However, developing complex algorithms exclusively
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on physical hardware is difficult: you are limited to operating in realtime, subject to breakdowns

and battery limitations of the hardware, and cannot parallelize the workload beyond the number

of robots that you have. Therefore, it is valuable to have a simulation platform that can simplify

and speed up algorithm development by overcoming these limitations. A simulation platform can

also provide the algorithm developer additional insight through visualization, detailed logging, and

additional debugging information not available on the respective hardware platform. With any sim-

ulation platform, however, there is an abstraction tradeoff between the complexity and accuracy of

the simulation versus speed, simplicity, and ease of development.

I present Kilosim124, a 2D robot simulator developed to quickly simulate large groups of simple

robots, seen in Fig. 3.1. I developed this simulator to provide fast, high abstraction simulation of

physical robots like the Kilobots80 —which are used as a model platform throughout this thesis —

and abstract robot representations, such as the common abstraction of a robot moving on a grid

—which is used in Chapter 6. This allows for large-scale simulations, on the order of hundreds of

thousands of trials, to thoroughly investigate an algorithmic parameter space. In addition, this open

source simulator is modularly designed to allow users to easily implement and integrate their own

robot models to gain the performance benefits of the simulation platform.

This simulator was used for all the simulations conducted in Chapters 4–6, enabling large-scale

parameter sweeps and many trials to produce robust results.

3.1 Comparison to Existing Simulation Platforms

Amultitude of robotic simulators have been created for various application domains and levels of

abstraction. Of particular interest here are simulators used particularly for multi-robot applications.

Some such simulators are highly specific to a particular application domain, such as the Übersim

multi-robot soccer simulator125 or the MARS simulator for marine swarm robotics126. It is also
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(a) Kilobots (b) Gridbots

Figure 3.1: Viewer output of Kilobot and Gridbot robots in simulated Kilosim environments.

possible to create simulators developed exclusively for a particular robot hardware platform, like

Bluesim for Bluebots127, or Kilombo128 and the Kilobot Gym129 for Kilobots . These tend to be

designed by researchers for a narrow research scope. They often received little attention or use be-

yond the group in which they were developed, or the extent to which the hardware platform is used.

In many cases, these are built as layers on top of existing physics or game engines like Bullet130 and

Unity131,132. This simplifies development for researchers by providing pre-optimized libraries for

the most computational intensive portions of simulator development, such as physics and graphics.

On the other end of the spectrum are powerful, widely adopted, general purpose robot simula-

tors such as Webots133, Gazebo134, V-REP135, and more recently NVIDIA’s Isaac Sim136. These

simulators implement a complete 3D physics engine and natively support a wide variety of avail-

able robots, with the ability for users to implement their own robot models. This allows for a small

simulation-to-reality gap, and the large user base and professional development make these reliable

choices. However, this simulation fidelty comes at a cost; namely, while the physics modeling comes
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with a large time cost, limiting their usability for large collectives and high throughput simulations,

such as parameter sweeps. These simulators also often have high hardware requirements, like Isaac

Sim’s requirements of an NVIDIA RTX graphics card and 64 GB of RAM. In comparison to Kilo-

sim, it is notable that Pitonakova et al. 137 found that V-REP could not feasibly complete simula-

tions with 50 robots, even for small scenes. In general, performing experiments in these complex 3D

simulators with more than dozens of robots reduces the performance to less than realtime138. How-

ever, most of these simulators are commercially supported products, or are have a large development

team, which increases the reliability and feature set of the simulator products.

Between these extremes simulators targeted at particular application domains. Most notable for

our purposes are Enki139 and ARGoS138, both of which are targeted at swarm simulation. Enki

is a 2D simulator that comes packaged with five robot models, with the ability for user to imple-

ment their own, and computes basic collision physics. ARGoS is capable of 2D or 3D simulation,

and is designed around the requirements of flexibility (implementing new robots and sensors) and

runtime efficiency. In comparison to V-REP and Gazebo, Pitonakova et al. 137 found that ARGoS

performed fastest with the largest group of robots tested (50 robots). ARGoS achieves this by divid-

ing the environment to perform highly parallelized physics computations, allowing it to perform 2D

simulations even with 10,000 e-puck robots.

3.2 Simulator Architecture

Kilosim is composed of modular classes built around the World . A simplified UnifiedModeling

Language (UML) diagram of the simulator architecture can be seen in Fig. 3.2. All code is written

in C++11.

A user implements their code by developing a main file and function, then importing and in-

stantiating the components of the Kilosim libraries. All simulations are built around a single in-
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Figure 3.2: UML diagram of the Kilosim so[ware architecture. For brevity, only the most relevant a�ributes and opera-
ঞons are included.

stance of the World class; the World contains all the state information for the simulation and is

responsible for performing all the discrete step operations to iterate through the simulation, includ-

ing communication, movement, sensing, collision handling, and calling robot controller functions.

When a user creates the World , or after creation, they can optionally include a LightPattern ,

which provides an image to map onto the 2D environment surface. This creates values for robots to

sense. Colors can also be used to represent obstacles, depending on the robot controller implemen-

tation.
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After creating a World , Robot objects can be instantiated and added to theWorld. Particular

robot models are discussed further in Section 3.4. Kilosim provides the abstract base class Robot as

an interface of the required functions to interface with the World . Multiple different robot models

can be used in a single simulation. Each robot class provides functions for: determining whether it

can communicate with other robots ( comm_criteria , primarily distance-based); an init function

that is called when the Robot is placed in the World ; and a controller that represents the phys-

ical operations of the robot, such as motor control and message handling. The robot model serves

as an abstraction layer between the simulator and the user code; it frees the user to write algorithmic

implementation details without handling the low-level robot operations.

Kilosim also provides a Viewer for visualizing the behavior of robots. Robots also have an inter-

face to dynamically set their color for visualizing behavior in the Viewer. The Viewer uses the Simple

and Fast Multimedia Library (SFML)140 to provide an interface for viewing the robot behavior.

This GUI does introduce significant computational overhead, and is therefore recommended only

for development purposes.

Kilosim contains ConfigParser , a configuration parser for loading configuration data from

JSON files. Configuration data can be loaded with a single function, without the user needing to

directly interface with the complexities and varying data types of JSON content. It also prevents

hard-coding of parameter information into the user’s compiled C++ code. This simplifies the pro-

cess of creating and running different experimental conditions.

Finally, Kilosim provides a flexible and feature-rich logging utility through the Logger ; this is

an essential research tool for producing comprehensive and interpretable data, with safeguards to

prevent overwriting data. The Logger saves data in the hierarchical data format HDF5141, which

provides a folder-like structure within a file. HDF5 was selected for its language-agnostic file format

(in contrast to language-specific pickled files) and its portable, self-contained nature (in contrast to

a database). Its binary representation prevents loss of precision that comes with text-based encoding
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Algorithm 3.1 Pseudo-code of a simulation step of the World in Kilosim: World.step()

1: for all robots do
2: Run robot controllers (motor and battery state)
3: Run user-implemented robot code
4: for all robots do
5: Communicate between robots
6: for all robots do
7: Compute next positions, neglecting collisions
8: for all robots do
9: Find collisions, between robots and boundaries
10: for all robots do
11: Move robots, accounting for collisions
12: Increment time

like CSV files, and the hierarchical nature allows for easy saving of metadata and parameters with

the simulation logs. A single function ( log_config ) will save all configuration metadata in an

experiment log file. To log simulation data, a user creates an aggregator function, which maps from

a list of robots to a vector of data, which typically contains some state information of the robots. For

example, this can be used to log pose and orientation of the robots, or summary statistics like the

eigenvalues of the robots’ connectivity matrix. Each of these aggregator functions is added to the

Logger once with add_aggregator . Thereafter, a simulation loop only needs to call the function

log_state to save all time-stamped data from the robots.

3.3 Performant Implementation

Various considerations were made in the design and implementation of Kilosim to improve its per-

formance. This includes design choices about the abstractions, as well as the structure of the code

itself.

The most significant impact on performance comes from the design of the step in the World,
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as this is where nearly all of the computation time is spent; this can be seen in Algorithm 3.1. This

is divided into separate loops over the robots that allow for parallelization. Because all computa-

tions must be computed over all n robots, these operations cannot be faster thanO(n). However,

it is notable that we separate the computation of the next positions (line 7) from collisions (line 9).

Because there can be collisions between robots, this allows for pairwise comparison of all potentially-

colliding new robot positions. First, the computation of all new robot positions is parallelized across

threads by OpenMP142. Then, the collisions between these new robot positions and any bound-

aries or obstacles are also computed in parallel, and the collision information is used for a parallelized

update of robot poses. When running a single instance of Kilosim, this parallelization results in sig-

nificant performance increases, dependent on the number of cores available in the computer used.

However, having an eight core computer does not result in 8× faster performance, due to the over-

head of dividing and merging the tasks, as well as non-parallelized components of the simulation.

When running many simulations, such as when conducting a parameter sweep, performance is best

when running multiple single-threaded instances.

Because of pairwise interactions between robots, a naive approach to implementing collision

detection and communication would result inO(n2) scaling with the number of robots. This is

problematic when our goal is to simulate large groups of robots. Instead, we reduce this complexity

by creating small spatial bins around the robot into which robots are placed. For collisions, these

bins are 2× the robot radius; for communication, this is 2× the communication radius. Robots

then only need to check for collisions and communication very locally, rather than against all other

robots, and the complexity will scale linearly with the environment size and collisions will scale lin-

early the number of robots.

In many simulators, one of the most computationally taxing components is realistic physics. To

circumvent this issue, Kilosim is designed without a physics engine; instead, it uses pseudo-physics.

Using accurate physics models is important for simulators that aim to provide a highly accurate
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representation of the physical world. Kilosim, however, is designed to simulate a higher level of ab-

straction, providing a sufficiently accurate physical representation that algorithmic trends reflect the

real world, at a lower computational cost than a physics engine. Therefore, Kilosim’s pseudo-physics

provide accurate detection of collisions, with a simple implementation of collision responses. In the

default collision response model, robots that collide are assumed to be circular, and they turn slowly

in a random direction. This arises from the behavior observed in collisions of real Kilobot robots:

they slowly slide against each other and collisions eventually naturally break apart. Consistent with

the modular design of Kilosim, it is also possible to disable collisions (i.e., allow robots to intersect)

and for users to implement their own behavior in response to collisions within a Robot model.

3.4 Robot Models

Currently, Kilosim comes packaged with a single robot model implementation: Kilobots. However,

I have also implemented models for two additional types of robots, which are available in separate

repositories. To be used by Kilosim, robot models must implement the abstract methods of the

Robot base class, as seen in Fig. 3.2. Namely, the init , controller , and comm_criteria func-

tions. In addition, any robot API functions will be defined within the robot model’s class.

3.4.1 Kilobots

Kilobots have been a popular robot platform for swarm behavior since shortly after their inception

in 2013. However, conducting large-scale simulations with these robots is difficult: they have lim-

ited battery life, noisy movement, and debugging can only be conducted by a single RGB LED and

a wired serial connection. An appropriate simulation platform can therefore significantly speed al-

gorithm development for this platform. In Fig. 3.1a, we can see what these simulated Kilobots look

like within Kilosim.
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The Kilobot model within Kilosim is well-suited for Kilobot development for a three primary

reasons. First, it fully implements the Kilobot Library API (Kilolib)143, providing the full com-

plement of capabilities available on the Kilobot robot, including ambient light sensing. Because

Kilosim is built in C++, it is also possible to develop code in Kilosim that will directly transfer to the

Kilobots, for which code is written in C.

In addition, we have also validated that the behavior of Kilosim Kilobots qualitatively matches

the behavior of physical Kilobot robots. This can be seen in Chapter 4, where our bio-inspired clas-

sification algorithm is able to achieve equivalent success in simulation and hardware. The simula-

tion resulted in significantly faster task completion times than were observed in the physical robots.

This is likely due to the simplification of collision physics, as well as less consistent straight move-

ment of the physical robots on slightly uneven surfaces. In Chapter 5, Kilosim Kilobots were used

to conduct a parameter sweep requiring over 700,000 individual simulation trials with 100 robots.

If conducted at sequentially at realtime speed, this would have required over 230 years to complete.

Instead, Kilosim was able to complete the trials at over 700× realtime, parallelized over 32 threads,

to finish in under four days.

We also validated Kilosim by simulating pattern formation with morphogenesis144. This behav-

ior was achieved on physical Kilobots by Slavkov et al. 145 , and we were able to replicate the behavior

in Kilosim without algorithmic changes146.

3.4.2 Gridbots

A grid-based world is a common abstraction within artificial intelligence and simulated robotics.

As such, it is a logical robot model to implement within Kilosim. In the typical grid world, the en-

vironment is a rectangular grid of cells, some of which may be blocked as obstacles, that operates in

discrete time ticks. A robot within the grid occupies a single cell, and can move to neighboring cells

(either in the four cardinal directions or to any of the eight neighbors). Robots may or may not be
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able to occupy the same cell, depending on the scenario.

We developed an implementation of this model in Kilosim, called Gridbots147. This model is ab-

stracted to allow for either type of movement described above, as well as parameterized communica-

tion range to allow for investigating the effect of this parameter. In addition, it provides a user API

to specify movements to neighboring cells, set a path to a target location, access location data, and

sense RGB colors within their environment. While this seems a simple abstraction, the same scal-

ing challenges occur as with more complex robot models. In fact, a naive Python implementation

achieved performance almost 100× slower than an equivalent representation within Kilosim148.

The Gridbots robot model was used in Chapter 6 of this dissertation, for which we were able

to conduct over 500,000 simulations in Kilosim. These included groups with up to 64 robots and

global communication. In Fig. 3.1b, we see an example of these Gridbots in a 384 × 384 cell grid

environment.

3.4.3 Coachbots

In addition to implementing the robot models used in this dissertation, I also created a simulated

representation of the Coachbot robots149,150. This collective of 100 robots, developed at North-

western University, was created to study behavior that could be achieved by more capable hardware

than found in the Kilobots. Namely, these robots possess: greater computational abilities, powered

by a Raspberry Pi computer; localization using the HTCVive lighthouse; high bandwidth global

communication over Wi-Fi; and faster, more accurate movement with differential drive wheels.

All of these Coachbot capabilities can be implemented within the Kilosim robot framework,

while providing the existing Coachbot API to the developer in a Coachbot class. The complete im-

plementation is available on GitHub151. Although we have not yet used this particular model for

algorithm development, its implementation demonstrates the flexibility of the Kilosim framework

to easily implement additional robot models. For example, this model differs from Kilobots in that
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its movement is driven by differential drive of a pair of wheels; this is accounted for by defining the

robot’s robot_compute_next_step to be determined by the forward kinematics of the motor con-

figuration. In addition, the Coachbot maintains a queue of string-based JSON-like messages that

can be checked asynchronously. Because Kilosim uses void pointers to transmit messages, any mes-

sage type can be used, as long as the receiver can correctly dereference the pointer. In addition, this

message queue can be stored within the Coachbot class, and the end user of the robot model does

not need to perform any message-handling beyond the access that is defined in the Coachbot API.

3.5 Conclusion

In this chapter I have presented an abstracted, high-performance robot simulator capable of high-

throughput simulations of a variety of robot models. I have demonstrated that Kilosim is able to

model existing swarm robot platforms like Kilobots and Coachbots, at up to hundreds of times

realtime, while providing a modular interface for creating additional robot models.

While Kilosim lacks the physical fidelity of general purpose simulators like Gazebo or Isaac Sim,

it can be run quickly on a lower-specification consumer computer with up to hundreds of robots.

Its modular design and extensibility also makes is more general-purpose than some research simu-

lators that focus only on a specific hardware model and application. In addition, its inclusion of a

viewer, configuration parser, and powerful logging tools make Kilosim a powerful research tool for

algorithm development, debugging, and data collection.
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When you have a single large robot that does everything,

if that robot breaks down, you lose your ability to do

anything.

Kelly & ZachWeinersmith

4
Bioinspired Site Inspection with a Minimal

Swarm

Collective systems in nature are ones in which a large number of relatively simple agents in-

teract with each other to produce complex behaviors152. Decision-making is a key behavior that ap-

pears across many of these systems and has been extensively studied over the past few decades153. In
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general, the agents are required to choose one out of multiple options present in their environment.

They have some means of obtaining noisy information about these options and of influencing each

other directly through communication or indirectly through stigmergy to achieve consensus on a

single decision154. This is the same type of problem we aim to solve with robotic collectives in site

inspection: determining the quality of a site through observations, and mapping this to a collective

decision about the state or quality of the site.

In both natural and robotic systems, it is also common to require observing multiple features

of the environment to determine its quality. This typically requires adaptively allocating individ-

uals to complete these sub-tasks87,90,91,92. Valentini et al. 41 presented a problem in which a group

of robots was tasked with classifying a single feature of their environment: whether the world was

mostly black or mostly white. However, robots were able to move into and out of a transient con-

sensus, rather than making the type of committed decision we require for inspection tasks. We add

this commitment, extend the problem to investigatemultiple features of the environment, and in-

troduce communication constraints that are more representative of biological and simple robot

systems.

In this work, we investigate the established single-feature decision-making problem, and we also

introduce and investigate themulti-feature collective decision-making problem for inspection. We

present a scenario in which the collective must make decisions about either one or three color fea-

tures in an environment using only local communication. The single-feature problem extends the

scenario in41 by introducing goal of making committed decisions, as well as solving the task with

more limited communication. In the multi-feature task, we also demonstrate a decision-making rule

and a dynamic task allocation strategy that allow the agents to lock in decisions in finite time.

This work was conducted in collaboration with Dr. Melvin Gauci. It was previously published at

the 2018 conference on Autonomous Agents andMultiagent Systems (AAMAS)155.
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Figure 4.1: An example of Kilobots in a 2.4× 2.4m (75× 75 bodylengths) arena. Kilobots can communicate to others
within a radius of approximately 3 body lengths.

4.1 Problem Definition and Motivation

We considerN agents that move in a 2-dimensional environment, with boundaries that are de-

tectable by the agents. The environment containsM features that individual agents have a means of

estimating. The features may either be inherently binary-valued, or else the agents must have some

agreed-upon threshold for making them as such. The features can thus be represented as functions:

fi : S → {0, 1} , i ∈ {1, 2, . . . ,M} (4.1)

where S is the environment. We can group the features into a vector-valued function over S :

f (S) = [f1 (S) , f2 (S) , . . . , fM (S)]T (4.2)

The features are defined over the environment as a whole. Examples of features include the ratio
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of white area to the total area in a black-and-white environment (as in41), the entropy of a pattern,

and the amount of curvature present in a pattern. It is assumed that the agents have some means

of making (noisy) estimates of the features. Considering the above examples, the color fill ratio fea-

ture can be estimated by calculating the ratio observed over a random walk; the entropy ratio might

be estimated by calculating the amount of regularity observed over a straight-line motion; and the

curvature might be estimated by performing edge following whenever an edge is detected, and cal-

culating the average radius of curvature. In this work, we focus on features of the type of the first

example discussed above (color fill ratio). Specifically, the feature is locally defined at every point

(x, y) in the environment, mapping the point onto a value in {0, 1}. The binary value of the feature

over the whole environment is defined as the rounded value of the fill ratio:

fi(S) = round
{

1
|S|

∫∫
S
fi(x, y) dA

}
, (4.3)

where |S| is the area of the environment and round(∗) is the usual rounding function, outputting 0

if ∗ < 0.5, and 1 otherwise. In other words, fi(S) assumes whichever one of the two values is more

prevalent in the environment. Obtaining estimates for features of this type is straightforward: the

agent simply samples a subset of points over the course of a random walk.

The agents are limited in what actions they may take. Each agent is capable of estimating every

feature in the environment, but is restricted to estimating only one feature during each observation

period (defined later in Sec. 4.3.1). This limitation is mainly imposed because in general, estimating

different features may require different motion patterns; moreover, in practice the computational

power available on simple physical agents may not be enough to sense and process all the features at

once.

The agents are able to communicate with each other. They may listen to messages from other

agents continuously, but are only allowed to transmit messages while they are not observing the en-
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vironment. Once again, this limitation is imposed because of the different motion patterns that may

be required to estimate the different features; for example, if agents were to disseminate while edge

following, this might bias their transmission towards other agents that happen to be performing the

same motion pattern in the same region, and so a random walk would be a more desirable motion

pattern during transmission.

The problem for the collective is to decide on the value of each feature over the environment as

a whole; in other words, to compute Eq. 4.2. The collective is required to not only have an estimate

that converges to Eq. 4.2 over time, but also to make a unanimous decision in finite time. When

collective decision-making is used as a primitive component in a composite behavior, this allows the

collective to move on to the next action.

4.2 Experimental Methods

4.2.1 Agent Model: The Kilobot Robot

We use the Kilobot robot80 as a basis for our agents. The Kilobot, shown in Fig. 4.1, is a miniature

mobile robot with a circular body of diameter 33mm, developed specifically for use in collectives.

Motion The Kilobot is capable of noisy locomotion in a straight line at approximately 1 bodylength/s

and turning on the spot in both directions, completing a full turn in approximately 10 s. Kilobots

are individually calibrated for motion, but in practice straight-line motion is inaccurate over long

ranges, and both straight-line and turning speeds exhibit significant variation among units.

Communication Kilobots can communicate with each other locally, transmitting to and re-

ceiving from neighbors within a 3 body length radius. Each robot is assigned a unique ID at initial-

ization, allowing their messages to be identified by receivers. They are capable of communicating at
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a rate of up to 10messages/s, although this rate decreases at higher robot densities.

Light Sensing The only environmental sensor on the Kilobot is an ambient light sensor.

Therefore, in our setup we use light to represent the environmental features to be estimated.

Figure 4.2: Far le[: Single-feature homogeneous distribuঞon with a 0.7 fill raঞo (i.e., proporঞon of white cells). Middle
le[: Single-feature non-homogeneous distribuঞon with a 0.7 fill raঞo. Middle right: Generaঞon of a mulঞ-feature
environment by overlaying 3 single-feature distribuঞons. Far right: mulঞ-feature environment with RGB fill raঞos (0.55,
0.8, 0.65). Colors are combined according to the standard RGB color model.

4.2.2 Simulation Platform

To perform experiments in simulation, we used the Kilosim simulator described in Chapter 3. The

ambient light sensor is emulated by directly feeding the Kilobot the light intensity at its position,

and for single-feature estimation, we use black and white (i.e., minimum and maximum brightness)

areas to represent the two feature values. For multi-feature estimation, we virtually extended the

light sensor to detect three different colors: red, green, and blue (see Fig. 4.2). All simulations were

conducted in a 2.4 × 2.4m environment (approximately 75 × 75 bodylengths). This environ-

ment is padded by a 50mm thick border with a gray light value, such that the agents have a means of

knowing then they have left the environment.
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4.2.3 Physical Platform

Physical Kilobot robots move using two vibration motors, based on the principle of stick-slip loco-

motion. Their communication channel is implemented using an infrared transceiver located at the

bottom of each robot. Channel sharing is achieved using a CSMA/CD protocol. The light sensor

on the physical robots reports the ambient light intensity with a 10-bit resolution.

Physical experiments were run on a whiteboard surface of 1.2 × 1.2mAn overhead projector

was mounted over the surface, which allowed us to project a light pattern onto the surface. The

Kilobot’s light sensor is sensitive enough to distinguish three levels of brightness: we used two levels

to implement the pattern (black and white), and one to define the boundary of the arena (gray).

The thresholds for distinguishing light levels were automatically calibrated for each robot before

each experiment. An overhead camera was used to record the experiments.

4.3 Single-Feature Decision-Making

4.3.1 Algorithm

The goal of the single-feature algorithm is for the collective of agents to combine their noisy esti-

mates of a binary-valued environment feature, arrive at a consensus over its value, and lock in a final

decision in finite time; that is, 100% of the agents must agree on the same answer. Our algorithm

consists of five components that we detail below. An overview of the agent behavior is shown in

Fig. 4.3. In the following description, we represent the binary-valued feature in terms of colors, with

black and white corresponding to the values 0 and 1, respectively.

1. IndividualMotion For the duration of the experiment, agents move in a random walk,

with a straight component drawn from an exponential distribution with a mean of 240 s, followed

by an on-the-spot rotation sampled uniformly from [−π, π) rad. If an agent enters the gray border
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Observation Dissemination

Message memory (180 s)

60 s confidence × 120 s 

Belief update:
at end of Dissemination

Count ratio of
light/dark

Send messages

Random walk
Concentration update:
when new message received

Figure 4.3: Timeline represenঞng agent behavior during the collecঞve decision-making algorithm.

region, it returns to the arena by turning until it no longer detects gray. Recall that agents move

forward at 1 bodylength/s and turn at approximately 0.63 rad/s.

2. Estimate and Confidence An agent makes an estimate of the feature in the environment

during a 60 s observation window by counting the time spent detecting black or white; it pauses its

observation timer during any time spent in the gray border region. At the end of an observation

period, the agent computes the ratio of white (n1) to total (n0 + n1) observation duration. The

confidence in this estimate is set to be minimumwhen the observation duration ratio is 0.5, and

maximumwhen it is 0 or 1. It scales linearly between these points. Formally, we define:

e = round
{

n1
n0 + n1

}
, c =

max {n0, n1}
n0 + n1

An agent then enters a dissemination period during which it sends messages containing its ID and

feature estimate. The duration of the dissemination period is set to c × 120 s; that is, the more con-

fident an agent is in its estimate, the longer it disseminates it. An analog of this concept is demon-

strated in nature, such as the waggle dance in honeybees156. Following a dissemination period, an

agent begins a new observation period.
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3. Belief During both observation and dissemination periods, an agent receives estimates from

other agents. It stores the agent ID and estimate in memory for 180 s. If an agent is heard frommore

than once within 180 s, only its most recent estimate is kept. At the end of a dissemination period,

an agent computes its belief to match the majority of estimates in its 180 s memory, selecting a ran-

dom belief if the count of each is equal or maintaining its current belief if its memory is currently

empty. In essence, the agent is integrating information over the space covered by its neighbors’ ran-

dom walks. In every dissemination period except for the first one, the agent transmits messages con-

taining its belief in addition to its ID and estimate.

4. Concentration Each agent also maintains a belief concentration C of the feature, which is a

moving average that represents its understanding of the collective’s feature belief. The concentration

is initialized at 0.5 and can range from 0 − 1. When an agent receives a message containing a belief

b, it updates its concentration if the sending agent is not stored in memory, for a new concentration

C∗:

C∗ = 0.9C+ 0.1b

The concentration represents an integration of the spatial belief over time, forming a longer-term

history than the transient beliefs.

5. Decisions When the concentration for a feature crosses a threshold of 0.1 from the extrema

and remains there for 30 s, an agent makes a non-reversible decision about the feature. A concen-

tration below 0.1 results in a decision of 0 (mostly black), while a concentration above 0.9 yields a

decision of 1 (mostly white). Increasing this threshold of After making a decision on the feature, an

agent changes from disseminating its belief to disseminating its decision; agents receiving this value

interpret it the same as a belief and use it to update their concentrations. This causes positive feed-

back that will increase the average concentration of the collective and push additional agents toward
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a decision.

Our algorithm above— in particular components 2 and 3— builds on the work of Valentini

et al. 41 . The most important distinction is that our algorithm uses local rather than global com-

munication. It also changes some stochastic computations (e.g., the observation and dissemination

period duration) into deterministic ones; pilot experiments confirmed that this does not degrade

performance. The notions of concentration and decision-making are not present in41; we intro-

duced these inspired by quorum sensing in natural collective systems93,94.

4.3.2 Simulation Results

We tested our algorithm in simulation on both (quasi-)homogeneous and non-homogeneous fea-

ture distributions. In a homogeneous feature distribution, each individual agent estimate arising

from a random walk is expected to represent a good approximation of the true value. As the envi-

ronment becomes less homogeneous, individual agent estimates are expected to become, on average,

less reflective of the true value, and the variance among them is expected to increase.

Recall that in our environment, the feature values 0 and 1 correspond to the colors black and

white, respectively. Therefore, the fill ratio r of the feature is given by the proportion of white area

present within the environment.

Homogeneous Feature Distribution

To create homogeneous feature distributions, the square environment was divided into a grid of

12 × 12 cells of equal size. To create a fill ratio of r ∈ [0, 1], each cell was randomly assigned a value

of black or white with probabilities 1 − r and r, respectively, independently of the other cells; an

example is shown in Fig. 4.2.

We ran simulations with 100 agents, which covers approximately 1.5% of the environment. The
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Figure 4.4: Simulated single-feature decision-making with a homogeneous feature distribuঞon (shading and bars indicate
standard deviaঞon.) Far le[: Mean feature esঞmate for all agents over ঞme, for differing fill raঞos. Middle le[: Mean
belief for all agents over ঞme. Middle right: Mean percentage of robots that have made a decision over ঞme. Far right:
Percentage of robots at end of trial that decided high (white), low (black), or remained undecided.
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Figure 4.5: Simulated single-feature decision-making in an environment with a non-homogeneous feature distribuঞon.
(Shading and bars show standard deviaঞon.) Far le[: Mean feature esঞmate for all agents over ঞme, for differing fill
raঞos. These are lower (closer to 0.5) than in homogeneously distributed environments. Middle le[: Mean belief for
all agents over ঞme. These are also closer to 0.5 than in homogeneously distributed environments. Middle right: Mean
percentage of robots that have made a decision over ঞme. Compared to homogeneous environments, decision-making
was slower, and fewer agents were able to make decisions with fill raঞos closer to 0.5. Far right: Percentage of robots at
end of trial that decided high (white), low (black), or remained undecided. A[er 180min., fewer robots made decisions
for fill raঞos closer to 0.5 than in the homogeneous case.
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initial distribution of agents was equally spaced within the environment with random orientations;

at this density, agents are roughly 6 bodylengths apart and must move in order to communicate

with each other. We conducted 10 simulations for various fill ratios ranging from 0.5 to 0.9. We

also tested fill ratios below 0.5 to verify the symmetry of the decision-making, but for clarity we only

present the upper half of the range.

Fig. 4.4 shows the results of 10 simulations for various fill ratios. The mean feature estimate and

belief stabilize within minutes, but with an average higher belief than estimate. The individual

agents’ concentrations rise more slowly over time; in higher fill ratios with a higher mean belief, the

concentration rises faster and this leads to faster decisions. For fill ratios of at least 0.53, no incorrect

decisions are made; when the fill ratio is at least 0.6, all agents reach the correct decision within the

150min. trial.

With a fill ratio of 0.5, no collective decision is made. The mean belief of approximately 0.5 re-

sults in concentrations that do not reach the threshold at either extreme. This means that our algo-

rithm does not perform symmetry-breaking for truly ambiguous features, which may or may not be

desirable, depending on the application.
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Non-Homogeneous Feature Distribution

We implement a non-homogeneous feature distribution simply by splitting the environment into

two strips, one of each color; an example is shown in Fig. 4.2. To achieve a fill ratio of r ∈ [0, 1], the

division line is set such that the area of the white strip as a fraction of the whole area is r, while the

remaining 1− r fraction of the whole area is black.

We conducted the same experiments as in the homogeneous feature distribution case. Fig. 4.5

shows that the resulting mean estimate and belief are lower than for the homogeneous environment,

resulting in slower decision-making. Agents were also less capable of classifying fill ratios closer to

0.5, with the collective only consistently making complete decisions for fill ratios of at least 0.7.

The results in Fig. 4.5 (far left) confirm the expectation that individual agent estimates in a non-

homogeneous environment will exhibit a larger variance than in a homogeneous environment. In

our two-section environment, the agents can only make accurate estimates of the fill ratio when

their random walk is close to the color interface. A random walk that happens to spend most of

its time in one of the two areas will heavily bias the estimate towards that area, and will incorrectly

increase the agent’s confidence in its estimate. This exacerbates the propagation of the noise in the

estimates into the beliefs, as shown in Fig. 4.5 (middle left); in turn, this leads to slower and less

accurate decision-making.

4.3.3 Physical Results

We conducted experiments with 30 physical robots in a 1.2 × 1.2m environment. In each of 5 tri-

als, we projected onto the surface a randomly-generated homogeneous environment using a grid

of 8 × 8 equally-sized cells (as in Sec. 4.3.2). The fill ratio was 0.7. This physical environment has

25% the area of the simulation environment, but uses 50% as many robots. The parameters of the

random walk conducted by the robots was modified from the simulation case to have a straight
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Trial Time to first Time to last
decision (min.) decision (min.)

1 7:20 42:15
2 7:15 41:00
3 19:35 53:20
4 8:15 34:25
5 11:30 28:10

Mean (SD): 10:47 (5:13) 39:50 (9:25)

Table 4.1: Physical Experiment Results

component drawn from an exponential distribution with mean 60 s and a turning component

drawn from a uniform distribution between
[
− π

2 ,
π
2
)
rad. This shorter, more correlated random

walk allowed robots to move more quickly after colliding (in the simulator, collided robots become

unstuck quickly due to the pseudo-physical collision resolution).

For each trial, we recorded the time after which the first agent made a decision, and the time until

all the agents had made a decision. The results are shown in Table 4.1. No robots made a wrong

decision in any of the trials. The collective successfully classified the environment in, on average,

less than 40min., with the first decision appearing, on average, in just under 11min.. There was

significant inter-trial variability in both the time for the first robot to reach a decision and the time

for all robots to decide. This can likely be attributed to the variation in the feature distributions

between randomly-generated environments, as well as the random nature of the Kilobots’ motion.

The physical robots exhibited some differences from their simulated counterparts. Their move-

ment was less consistent than in simulation, with a straight-line movement that curved to varying

degrees, and an inconsistent turning speed. When robots collided, they often failed to separate un-

less they changed to a turning state, resulting in transient clusters of robots in the environment.

Both of these factors increase the locality of robot movement and decrease mixing. In addition, the

simulator did not account for the noisy light sensing that was observed on the physical Kilobots.
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These differences in movement and sensing likely combine to decrease the accuracy of the robots’

estimates and beliefs. A video of the physical experiments is available in the online supplementary

material157; note that due to some minor imperfections in the surface, and the Kilobots’ locomo-

tion mechanism (stick/slip with vibration motors), some robots become stuck and rotate around a

single point.

4.4 Multi-Feature Decision-Making

4.4.1 Algorithm

The algorithm for multi-feature decision-making extends that for single-feature decision-making,

with each agent keeping a belief, concentration, and decision for each of the three color features in

our simulation. Each agent observes a single feature and disseminates its estimate of that feature in

addition to the index of the feature. Agents receive and store estimates for all features from other

agents, which they use to update beliefs for each feature at the end of their own dissemination pe-

riod. Agents then transmit all beliefs in their future messages. Newmessages containing beliefs will

therefore trigger a concentration update for all features. A decision on each feature is made from its

respective concentration, independently of the other features.

Feature Switching On its own, the algorithm described above would be extremely sensitive to

the initial allocation of agents to features; in the worst case, a feature would never be decided upon

if no agents are allocated to it. Intuitively, it would make sense to allocate more agents to features

that are harder to decide. However, we assume that no a priori information is available about this,

and we therefore introduce a dynamic task allocation mechanism into the algorithm. While agents

can only estimate one feature at a time, they are allowed to switch between estimating different fea-

tures. We consider two options for when this switching may happen: either before each observation
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period, or only after a decision has been made on the current feature. Moreover, we consider three

possibilities for choosing which feature to switch to: the feature that has a concentration closest to

0.5 (the least certain feature), the feature with a concentration furthest from 0.5 (the most certain

feature), or a random feature. An agent may not switch to a feature on which it has already made a

decision. If there are no more undecided features, an agent remains allocated to its current feature.

4.4.2 Simulation Results

To create multi-feature environments, we overlaid single-feature environments. Three homoge-

neous feature distributions were first independently generated as described in Sec. 4.3.2, but with

the color white replaced with one of red, green, or blue. These three feature distributions were then

‘added’ together so that every cell contained between zero and three colors (inclusive). This process

is depicted in Fig. 4.2 (right two), where the color combinations are represented visually according

to the standard RGB color model.

The collective’s task now is to decide whether each of the red, green, and blue fill ratios is below

or above 0.5. The three fill ratios were chosen so as to provide features of varying difficulties for

the collective to decide on: red fill ratio= 0.55 (hard); green fill ratio= 0.8 (easy); and blue fill

ratio= 0.65 (intermediate).

We investigated six feature switching laws as discussed in the previous section, based on two pos-

sibilities for when the agents are allowed to switch between features, and three possibilities for which

feature they switch to:

1. Agents may switch after deciding on the current feature to the least certain of the undecided

features

2. Agents may switch after deciding on the current feature to the most certain of the undecided

features
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Figure 4.7: Decision-making progress for different feature switching condiঞons, with all agents iniঞally allocated to
red. (Le[: Decision-making progress for all features. Shading represents standard deviaঞon. Right: Allocaঞon of agents
between features.)
Top: Agents switch to their least certain undecided feature a[er making a decision about their current feature. A few
agents decide for red and switch to green and blue, both of which are decided faster than red. Fewer than ten agents
were allocated to green for all agents to make a decision.
Middle: Agents switch to their least certain undecided feature before every observaঞon period. Agents are more quickly
re-allocated to blue and green for a short period of ঞme, resulঞng in quicker decisions than when feature switching only
occurs a[er decisions.
Bo�om: Agents switch to their most certain undecided feature before every observaঞon period. More agents end up
allocated to blue than when agents change the least certain feature, reducing the accuracy of beliefs about red and
prolonging the feature’s decision ঞme.
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3. Agents may switch after deciding on the current feature to a random undecided feature

4. Agents may switch before each observation period to the least certain of the undecided fea-

tures

5. Agents may switch before each observation period to the most certain of the undecided fea-

tures

6. Agents may switch before each observation period to a random undecided feature

For each switching law, we ran simulations with four initial agent-to-feature allocations: one with

an equal allocation of agents to each feature, and three simulations with all the agents allocated to

a single feature. For each switching law and initial allocation (16 combinations in total), we ran 10

simulation trials with 100 agents using randomly-generated feature distributions.

We compare the multi-feature decision-making time to a baseline of 100 agents deciding on each

feature, a case of single-feature decision-making from Sec 4.3. When agents are initially distributed

equally between the features, no feature-switching strategy shows a clear advantage over others.

Notably, all remain close to the reference time to reach decisions.

However, when agents are not initially equally distributed, there is an advantage in decision-

making time when agents switch to the least certain feature at each observation period. For the eas-

ier features (blue and green), this strategy produces quicker decisions when agents are not initially

allocated to those features.

We investigate the reason for this advantage in Fig. 4.7, which demonstrates the changes in allo-

cation and decisions over the simulations when agents are initially allocated to red. This is an expan-

sion of Column 3 in Fig. 4.6.

Switching features for each observation period instead of after a decision results in faster decision-

making because agents are more quickly reallocated to uncertain features. Looking at the agent al-

location in the middle row of Fig. 4.7, we see that agents detect red for the first observation cycle,
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then switch almost entirely to green (which, having not been previously observed, is the least cer-

tain feature with a concentration of 0.5). Most agents make a decision on green before their next

observation period because of the large number of agents dedicated to the task. They then switch

to blue (also unobserved and therefore with a concentration near 0.5) and make a fast decision be-

fore switching back to red. In contrast, in the top row of Fig. 4.7, where agents switch features only

after decisions, changes in allocation are much slower. However, in this scenario there is no cost for

switching features; if such a cost existed (for example, if robots had to move to a new location or re-

place their sensor for a different feature), the benefit of switching between observation periods could

be negated.

Switching to the least certain feature produces an advantage because it prevents over-allocation

of agents to easy features. This can be seen in the contrast between the bottom 2 rows of Fig. 4.7,

where agents switch to the most or least certain feature for each observation period. Counter-

intuitively, agents that switch to the most certain feature remain on red until some agents have made

a decision on the feature; belief updates will push the concentration above 0.5 and make it perceived

as the most certain feature. This delays decision-making on other features until agents this perceived

easy feature is decided by a few agents. However, after agents move to and quickly decide green,

they disproportionately switch to blue instead of red (at approximately 30min. in the bottom right

of Fig. 4.7). If they decide red while observing blue, they will remain detecting blue. Compared to

agents switching to the least certain feature, agents are over-allocated to blue. This reduces the accu-

racy of estimates (and by extension, beliefs) for red, prolonging the decision process.

4.5 Conclusions and Future Work

In this chapter, we investigated both the single-feature and multi-feature collective decision-making

problems for inspection. Our algorithm uses only local communication, and is able to consistently
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make a correct unanimous decision in finite time, even on features that are almost completely am-

biguous. The algorithm can correctly classify a number of features simultaneously in a multi-feature

environment. This holds even if the algorithm is presented with pathological initial agent-to-feature

allocations, thanks to a dynamic task allocation mechanism. We examined different types of task

switching rules, and identified the one that works best over various initial allocations.

This represents an important skill for multi-robot inspection. Even simple robots are able to

correctly identify the state of multiple relevant environmental features through prudent commu-

nication and an algorithm for mapping observations to classifications. It also shows that multiple

features can be inspected for by a single swarm in a single pass, which can also speed evaluation of a

site.

In future work, we can implement multi-feature collective inspection where the features are fun-

damentally different from each other. For instance, the agents could be required to evaluate the

color fill ratio, entropy, and curvature of the environment, as described in Sec. 4.1. These types of

features can require different movement strategies, which is representative of different real-world

inspectable features that might require evaluation. In the next chapter, we will also look at another

approach to solving the same single-feature decision-making problem; this builds on the concept

presented here of building a model representation that accounts for a robot’s uncertainty about the

world state, but instead of creating a multi-level, hierarchical model, it represents this knowledge

with a Bayesian distribution.
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This is what we mean when we talk about “robots.” We’re

talking about cognitive abilities, not the fact that they’re

made of metal instead of flesh and powered by electricity

instead of chicken nuggets.

Kevin Drum

5
Bayesian Site Inspection with a Minimal

Swarm

For groups of robots to cooperate in complex scenarios, they must be able to collectively make

choices at multiple decision points. In many cases, this takes the form of a “go/no-go” problem:

each robot must select the best of two possible choices based on some incomplete information avail-
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able to them. In swarms of robots, this challenge is compounded: cooperative behavior relies on all

the robots quickly coming to the same decision.

This is a form of collective robotic inspection where the robots must perform a binary classifi-

cation of their environment, which is prevalent in potential applications. For example, robots may

first classifying whether an agriculture field contains pest, then eliminate the pests if present. Or,

robots may inspect a potential site for a human habitat onMars, then build the habitat if it is clas-

sified as suitable. Solving this problemmay require a decentralized approach if the robots cannot

rely on a central process for collecting information and taking decisions. It is challenging to have a

large, decentralized group of robots quickly and accurately make collective decisions, especially in

the binary go/no-go scenario.

In Chapter 4, we presented a bioinspired approach to solving this type of classification site in-

spection problem. However, while this algorithm successfully achieved collective decision-making,

it was heuristically designed and lacked a mathematical grounding. This makes is difficult to intu-

itively understand parameter selections and the speed vs. accuracy tradeoff in decision-making. In

contrast, Bayesian algorithms provide a statistically grounded approach to decision-making from

multiple observation sources in multi-agent systems95,100,101.

In this chapter, we present a novel Bayesian algorithm for a robot collective to achieve fast, ac-

curate decisions about their environment. We abstractly model the go/no-go decision by tasking

robots with classifying monochrome environments as filled with a majority of black or white, as

in41 and Chapter 4, which is shown in Fig. 5.1; this represents any scalar environmental feature that

could be observed by robots. Each robot behaves as a Bayesian estimator, while exchanging and in-

tegrating observations from nearby robots. We show that collective decisions are possible even with

few assumptions about the capabilities of the robots: a collective of 100 simulated Kilobot robots

is able to achieve accurate decisions even when they are sparsely distributed and have locally-limited

sensing and communication. We find that positive feedback improves both the speed and accu-
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racy of decisions, and that each robot making fewer observations can improve decision accuracy by

reducing their spatial correlations. In addition, a well-chosen regularizing prior allows for a lower

decision-making threshold with a small accuracy cost. We also demonstrate that the algorithm’s

speed naturally adapts to the difficulty of the environment. Finally, we compare this approach to

a fixed-time benchmark algorithm that provides theoretical accuracy guarantees even in worst-case

environments.

This work was conducted in collaboration with Dr. Melvin Gauci, with theoretical work for the

benchmark algorithm by Dr. Frederick Mallmann-Trenn. It was published at the 2020 Interna-

tional Conference on Robotics and Automation (ICRA)158.

5.1 Methods

5.1.1 Problem Definition

We present a problem in which k robots complete a binary classification task. Robots are placed

in a bounded black and white environment, where the proportion of white within the space is the

environment’s fill ratio f, as shown in Fig. 5.1. The goal is to collectively decide whether the majority

of the environment is filled with black or white (i.e, is the fill ratio above or below 0.5). Because the

problem is symmetric, we show results for environments where f > 0.5.

Classifying an environment results in a trade-off between the time for all robots to decide and the

collective accuracy of the decision. This is particularly pronounced in the most challenging environ-

ments, where the fill ratio is close to 0.5; the small difference between black and white area makes it

more difficult to distinguish than extreme fill ratios.

This formulation represents an abstraction of real-world problems. In an agricultural applica-

tion, the white regions would be analogous to pest-damaged areas of a field, with the goal of deter-

mining if a field requires pest treatment. Alternatively, the color could represent mineral deposits
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in a Mars exploration mission. In each case, the goal is to make a go/no-go decision about a single,

spatially distributed feature.

Kilobot

2.4 m (~75 bodylengths)
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Figure 5.1: Examples of simulated environments with different fill raঞos f. The goal is for robots to determine whether
the environment is mostly white (f > 0.5) or mostly black (f < 0.5). Top: Image from a Kilosim simulaঞon with
f = 0.52, containing 100 robots, each able to communicate within a radius of 3 bodylengths. Right: Kilobot robot,
which is the model for the simulated robots. Bo�om: Example environments with different fill raঞos.

5.1.2 Robot Model

We investigate this decision-making problem using Kilobots as our model robot platform80, whose

capabilities narrow the complexity of possible decision algorithms. Kilobots are able to sense their

environment with an ambient light sensor located on the top of the robot, allowing them to dis-

tinguish black, white, and gray regions of an environment projected from above onto a bounded
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2D arena. These small robots (33 mm diameter) lack complex bearing or localization capabilities.

Therefore, we rely on pseudo-random walks. The robots also have limited communication band-

width and range; they can broadcast 9-byte messages to robots within approximately 3 bodylengths.

In environmental classification problems, robots are typically sparse. 100 Kilobots cover only

1.5% of the 2.4× 2.4 m arena (≈ 75× 75 bodylengths) available for the physical robots. Therefore,

we cannot rely on assumptions required in many distributed algorithms, like maintaining a strongly

connected network. However, we demonstrate that it is possible to design robust decision-making

algorithms even for robots with limited capabilities.

5.2 Algorithms

We developed a Bayesian algorithm that allows simulated Kilobot robots to classify black and white

environments. The goal was to classify the fill ratio f of the environment as mostly white (a decision

of df = 1) or mostly black (df = 0). Each robot employs a Bayesian model of the fill ratio and makes

decisions using credible intervals of the posterior distribution. We also compare to a benchmark

algorithm that provides accuracy guarantees for even the worst-case scenarios, sacrificing speed for

accuracy.

5.2.1 Bayesian Decision-Making Algorithm

The algorithm followed by each robot is shown in Alg. 5.1.

Robots make binary color observations C of their environment, which we model as draws from a

Bernoulli distribution where the probability of observing white is the fill ratio:

C ∼ Bernoulli(f) (5.1)
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Each robot models the unknown fill ratio f of the environment as a Beta distribution:

f ∼ Beta(α, β) (5.2)

resulting in the posterior update for each observation:

f | C ∼ Beta(α + C, β + (1− C)) (5.3)

Initialization: Robots are placed uniformly in the arena with random orientation. Each robot’s

prior model is initialized with Beta(α, β), where both parameters are initialized as α0, a parameter

determining how regularizing the prior is. Each robot also sets its observation index i = 0.

Movement: For the duration of the trial, each robot performs a pseudo-random walk to cover

the arena, defined by segments of movement in a straight line, followed by a random turn. The du-

rations of the straight segments are drawn from an exponential distribution with mean of 240 s,

while turns are drawn uniformly from 0 − 2π. This parameterization was previously determined in

Chapter 4. The edge of the bounded environment is defined by a gray region, as seen in Fig. 5.1. If a

robot detects gray light, it turns continuously until it exits the border region.

Observation: Each robot makes an observation C every τ seconds: C = 1 if white, C = 0 if

black, and ignoring gray observations. The posterior of the fill ratio is updated with the observation

as in Eq. 5.3 and i increments by 1.

Communication: After a robot makes its first observation, it begins broadcasting its most recent

observation index i and observed color C. While continuing to move, observe, and broadcast, all

robots also listen for messages from neighboring robots. Upon receiving a new observation, the

receiver updates its posterior as with its own observations.

Decision: Each robot checks whether its decision criterion is met after every posterior update.
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Algorithm 5.1 Bayesian Decision-Making Algorithm
Input: Observational interval τ, credible threshold pc, prior parameter α0, positive feedback
indicator u+, robot UID id
Output: Binary classification of environment df
1: Init counter of white observations α = α0
2: Init counter of black observations β = α0
3: Init observation index i
4: Init incomplete decision df = −1
5: Init dictionary of received observations s = {ID : (0, 0)}
6: for t ∈ [1,T] do
7: Perform pseudo-random walk
8: if τ divides t then
9: C← observed color (0, 1)
10: α← α + C
11: β← β + (1− C)
12: i← i+ 1
13: Letm = (id′, i′,C′)
14: if s(id′) ̸= m(id′) then
15: α← α + C′

16: β← β + (1− C′)

17: if df = −1 then
18: Let p denote the cumulative distribution function of Beta(α + α0, β + α0) at

0.5.
19: if p > pc then
20: df ← 0
21: else if (1− p) > pc then
22: df ← 1
23: if d ̸= −1 and u+ then
24: Broadcast message (id, i, df)
25: else
26: Broadcast message (id, i,C)
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The credible threshold pc defines the probability mass of the posterior that must lie on one side

of 0.5 in order for a decision to be made. If the posterior’s cumulative distribution p at 0.5 passes

the criterion (p ≥ pc), a decision is made that the environment is black (df = 0), as most of the

probability is below 0.5. Conversely, if (1 − p) ≥ pc (i.e., most of the probability mass is above 0.5),

the environment is classified as white (df = 1). This is the robot’s irreversible go/no-go decision.

After a decision is made, a robot will broadcast its decision in place of its observation if positive

feedback (u+) is used. Otherwise, it will continue to transmit its observations.

This algorithm depends on four parameters:

• Observation interval τ (s) is the time between observations, where τ > 0. Shorter observa-

tion intervals mean collecting observations quicker, but results in observations that are less

spatially distributed. Longer intervals result in more independent observations.

• Credible threshold pc is the minimum probability mass of the posterior that must lie on one

side of 0.5 in order to make a decision. We assume 0.5 ≤ pc < 1. Higher credible thresholds

require more observations before enough probability amasses to make a decision.‘

• Prior parameter α0 is a positive integer used for both shape parameters of each robot’s prior

distribution of f. Setting α0 = 1 forms a uniform prior, while α0 > 1 creates a symmetric

prior peaked around 0.5. This regularizing prior indicates a lower prior belief that the fill

ratio is near 0 or 1, analogous to having previously made α0 − 1 black and α0 − 1 white

observations.

• Positive feedback u+ is a boolean indicating whether robots will transmit their decision df

in place of their most recent observation C after they make decisions. Positive feedback is

used effectively for decision-making in insects and bacteria. This feedback reinforces deci-

sions made by robots that decide early, but it may push the group to the wrong decision or

split the group if early-deciding robots conflict.
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While there is intuition behind the trends of these parameters individually, the interactions and

optimal choices are unknown. We use a parameter sweep to investigate the effect of parameter values

on speed and accuracy, as well as the interactions between the parameters.

5.2.2 Benchmark Decision-Making Algorithm

We now describe a fixed-time algorithm for which parameter settings can be derived that guaran-

tee correct decision-making to an arbitrary accuracy in an arbitrary environment of known size, as

shown in Alg. 5.2. Given a worst-case fill ratio that we wish to be able to detect, and a desired ac-

curacy (i.e., tolerance for incorrect decisions), we can compute the number of weakly correlated

samples S that a single robot requires to make a decision. If we instead have k robots, robots first in-

dependently collects samples (Phase 1), and then disseminate information among each other (Phase

2). The observation phase must be long enough for each robot to collect at least S/k samples; the sec-

ond phase must be long enough for all pairs of robots to communicate, such that each robot has a

total of at least S samples.

Phase 1: Sample Collection

We first select a worst-case fill ratio f̂ (i.e., how close to 0.5) to be able to distinguish. To make a

correct decision, we need enough samples that the sample mean is within ε = 2 · |f− 0.5| of the true

fill ratio. For a given confidence level 1− δ/2, we need a total of S uncorrelated* samples:

S ≥
4̂f(1− f̂)Z

(
1− δ

4
)2

ε2
(5.4)

*As mentioned above, there is a very weak correlation between samples. However, by fine-tuning the time
between samples τ, we can make sure that the probability of sampling a white cell is within f± ε/4. This error
is small enough to ensure our calculations hold.
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using the Z-score of the standard normal distribution. This is derived from the two-tailed 1 − δ/2

confidence interval using a Gaussian approximation of the Binomial distribution159.

The S/k samples each robot collects must be uncorrelated in order for Eq. 5.4 to hold. If nothing

is known about the distribution of colors within the environment, we must design for the worst

case, where samples are highly locally-correlated (i.e. a non-homogeneous environment). Then, each

robot must move τ ≥ tmix between samples, where the mixing time tmix is a property of the size and

topology of the environment, and the nature of the random walk. Conversely, if the environment

is homogeneous (i.e., if each cell is colored independently of its neighbors, as in 5.1), then the obser-

vation interval τ need only be long enough that a robot does not sample more than once from the

same grid cell consecutively. Therefore, the Phase 1 duration is S/k · τ.

Phase 2: Sample Communication

Each robot now has S/k samples but needs S samples to make an accurate decision. We assume that

the robots have IDs, can ignore repeated information, and have a communication radius rcomm.

When robots A and B are within rcomm of each other, A collects and stores B’s samples if it has not

done so already, and vice-versa. We must now determine how long robots need to move such that

each pair of robots has interacted, to some desired confidence level 1 − δ/2. This notion is captured

by the meeting time, tmeet, which is defined as the worst-case expected time for two robots to meet,

regardless of their starting location. Note that tmeet is a function of: (i) the environment size; (ii)

the environment topology; (iii) the nature of the random walk; (iv) the communication radius. To

guarantee with probability 1 − δ/2 that all pairs of robots have communicated, we require a Phase 2

duration of:

tcomm = 2 log
(
k2
δ

)
tmeet (5.5)

The probability that two random walks meet after 2tmeet steps is, by the Markov inequality, at
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least 1/2. Thus, the probability that any two given random walks do not meet after log(k2/δ) inter-

vals of length 2tmeet is 1
2log(k2/δ)

= δ
k2 .Taking the union bound over all

(k
2
)
pairs gives that the total

probability of failure is at most k(k−1)
2

δ
k2 ≤

δ
2 .

160. Combining the δ/2 failure risk from each phase,

we can guarantee the decision will be correct with probability 1− δ.

Algorithm 5.2 Benchmark Decision-Making Algorithm
Input: Total communication time tcomm, observation interval τ, robot UID id, number of
samples S/k
Output: Binary classification of environment df
1: Init counter of white observations α = 0
2: Init counter of black observations β = 0
3: Init dictionary of received samples s = {ID : (0, 0)}
4: for t ∈

[
1, Skτ

]
do

5: Perform pseudo-random walk
6: if τ divides t then
7: C← observed color (0, 1)
8: α← α + C
9: β← β + (1− C)
10: s(id) = (α, β)
11: for t ∈

[ S
kτ,

S
kτ + tcomm

]
do

12: if newmessage (id′, α′, β′) then
13: s(id′) = (α′, β′)
14: Broadcast message (id, α, β)
15: Let αT denote the sum of the α values in s
16: Let βT denote the sum of the β values in s
17: if βT > αT then
18: df = 0
19: else
20: df = 1
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5.3 Experiments

We conducted experiments testing both algorithms in Kilosim, an open-source Kilobot simulator

we developed that is able to run at over 700× real speed for 100 robots124, allowing us to thor-

oughly investigate the parameter space. A demonstration video is available on YouTube161. All

experiments were conducted with 100 robots in a 2.4 m × 2.4 m arena. To investigate the perfor-

mance in settings of varying difficulty, we tested five different fill ratios f: 0.52, 0.55, 0.6, 0.7, 0.8.

Fill patterns (as seen in Fig. 5.1) were generated for each trial by pseudo-randomly filling a 10 × 10

grid of squares with black or white to match the fill ratio. Trial duration was capped at 50,000 s

(≈ 14 hours) each.

5.3.1 Bayesian Algorithm

We conducted a parameter sweep across the following values, running 100 trials for each of the re-

sulting 7,280 parameter combinations.

• τ (s) : 1, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300

• pc : 0.9, 0.95, 0.98, 0.99

• α0 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50

• u+: True, False

5.3.2 Benchmark Algorithm

For the benchmark algorithm, we computed the required time parameters τ and tcomm to meet the

guarantees of δ = 0.1 (equivalent to the Bayesian pc = 0.9) and ε = 0.04, which matches the most

difficult environment (f = 0.52).
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Because the robots’ random walk is highly correlated relative to the grid cell size, an upper bound

on τ is calculated from the expected time to cross a grid cell. Given a robot speed of 1 bodylength/s

and grid cells of approximately 7 × 7 bodylengths, we selected τ = 10 s, which is the time to cross

a cell diagonally. From Eq. 5.4 have that S = 2,398 samples, or 24 per robot, resulting in a Phase 1

duration of 240 s.

We computed tmeet empirically, because it depends on environment- and robot-specific factors.

To match the worst expected meeting time across all possible starting positions, we placed two

robots in opposite corners of the arena with random orientation. Over 5,000 trials, we computed

the mean time for the robots to first communicate as 1,151 s. From Eq. 5.5, we therefore set a Phase

2 duration of tcomm = 26,503 s. We conducted 100 trials with these parameters.

5.4 Results

We assess the success of the Bayesian decision-making algorithm by considering the speed vs. accu-

racy trade-off across our parameter sweep. We treat decision-making as a multi-objective optimiza-

tion problem by comparing the accuracy of decision-making vs. the time for all robots complete

decisions in each parameter condition. The optimal parameter selections are those that lie along the

Pareto frontier of accuracy and decision time.

We first consider the impact of positive feedback (u+) in the most difficult environment, where

the fill ratio is the most ambiguous at f = 0.52. As shown in Fig. 5.2A, positive feedback is es-

sential for pushing the group to decisions, dramatically improving both the decision accuracy and

speed. In many conditions without positive feedback, the entire group was unable to reach decisions

within the 14 hour simulation limit, while with positive feedback the worst decision time was under

5 hours. One might expect positive feedback to split the swarm into two groups, resulting in lower

overall accuracy; however, this occurs more when positive feedback is not used, resulting in a collec-
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Figure 5.2: Speed and accuracy of Bayesian decision-making. Each point represents the median ঞme for all robots to
reach a decision and median accuracy of the resulঞng decisions, over all trials for a parঞcular condiঞon. Ellipses show
the 25–75th percenঞle in each dimension. The black line shows the Pareto front of decision ঞme vs. accuracy. Each
successive figure shows a subset of the data from the preceding one. A: For a fill raঞo of 0.52, decisions were faster and
more accurate when posiঞve feedback was used. Comparing to results from Chapter 4, certain parameter choices were
faster while maintaining high accuracy. The benchmark algorithm exceeded its accuracy guarantees but was slower
than comparaঞvely accurate Bayesian parameter combinaঞons. B: Longer intervals between observaঞons counter-
intuiঞvely resulted in more opঞmal decisions (showing u+ = True). C: Lower credible thresholds save ঞme with
minimal accuracy cost (showing τ ≥ 15). D: Lower credible thresholds are effecঞve only if a regularizing prior prevents
premature decisions (showing pc ∈ {0.9, 0.99} on le[ and right, respecঞvely).

tive accuracy consistently below 70%. This is consistent with both previous robot results in31,155,

and the use of positive feedback in biological collectives. As a comparison, we look at the bi-inspired

algorithm from Chapter 4 in the same environment. It lies on the Pareto front, but many parameter

choices for the Bayesian algorithm achieve the same accuracy faster.

Focusing only on conditions where positive feedback is used, we investigate the impact of the

interval between observations (τ), shown in Fig. 5.2B. Somewhat surprisingly, higher times between

observations yields results closer to the Pareto optimal front. While a shorter observation interval

yields more total observations, they are highly spatially correlated. A longer interval results in fewer

observations but more mixing, therefore resulting in more representative samples and more accurate
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Figure 5.3: Analogous plot to Fig. 5.2B for a fill raঞo of 0.8. On the same ঞmescale, decisions were significantly faster
and more accurate in this easier environment.

decisions in a shorter time.

Given the benefits of positive feedback and longer observation intervals, we now look at the effect

of credible threshold (pc), shown in Fig. 5.2C. An intuitive pattern emerges that higher credible

thresholds produce higher accuracy, but choosing the highest threshold of 0.99 can incur a large

time cost. In Fig. 5.2D, we see when this occurs by contrasting the decision results for pc = 0.9 and

pc = 0.99. Here it becomes apparent that there is an interaction between the the choice of prior and

the credible threshold. When a sufficiently large regularizing prior is used, the credible threshold can

be low because the prior prevents premature decisions.

The benchmark algorithm consistently exceeded its 90% accuracy guarantee, as seen in Fig. 5.2A.

The high ratio of time spent communicating vs. observing also underlines the previously-observed

benefit of collecting fewer, less correlated samples. However, meeting this algorithm’s worst case

guarantees incurs a time cost in comparison to many Bayesian parameter configurations. It requires

sufficient time for enough direct pairwise robot communications, rather than forming a multi-

hop network by re-transmitting observations. However, this accurately reflects the constraints in

the modeled robot system, whether bandwidth limitations and channel capacity prevent effective
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re-communication. Fig. 5.3 also shows that the Bayesian algorithm is adaptively faster in an easier

environment, with f = 0.8. The benchmark algorithm performed perfectly, but still took 26,743 s

(≈ 7.5 hours) for all robots to reach a decision, because its fixed time is determined by the most

difficult fill ratio.

5.5 Conclusions and Future Work

We have introduced a decentralized Bayesian algorithm (Alg. 5.1) that allows simple, sparsely spaced

robots to achieve accurate classifications of an environmental feature. This is representative of the

types of tasks we expect robots to be able to achieve in inspection tasks. With well-selected param-

eters, the robots were able to achieve this go/no-go conclusion even when the difference between

black and white fill was only 4%. When the feature distinction was greater, decision speed and ac-

curacy significantly improved, while becoming less sensitive to parameter choice. This adaptability

makes this approach suitable for applications where little a priori knowledge is available about the

feature under consideration, in contrast with the benchmark algorithm, where providing guaran-

tees for the worst case requires pre-selecting a longer decision time for all environments. However,

robots using the Bayesian algorithm do not know whether others have made a decision, in contrast

to the guarantee of decisions after the benchmark’s fixed duration.

The Bayesian algorithm is also tunable; for example, if an expected fill ratio is known, an in-

formed prior can be selected. If the accuracy requirements are lower in a particular case, the cred-

ible threshold could be lowered to speed up decisions. Positive feedback increasing decision speed

and accuracy also demonstrates that bio-inspiration can be beneficial when used with statistically-

grounded decision models, rather than as an alternative approach.

We also showed that it is possible to create an algorithm with accuracy guarantees for simple

robots without knowing the environment’s difficulty, but this incurred a trade-off in total decision
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time, across all environment difficulties. The benchmark algorithm’s guarantees may also be fragile

in the real world; for example, robot failure after starting would violate the requirement of k robots

and result in insufficient observations. In practice, we have shown high accuracy can be consistently

achieved with the Bayesian algorithm, without the explicit guarantees of the benchmark.

In Chapter 4, we showed a different, bioinspired algorithm to solving the same collective classifi-

cation problem; this Bayesian approach provides a number of benefits over this previous approach.

The Bayes Bots algorithm provides a more streamlined, statistically grounded approach with fewer

parameters. Unlike the bioinspired algorithm, its parameters also have a more interpretable and in-

tuitive impact on the speed and accuracy of the robots’ decision-making. The bioinspired approach

also modeled each robot’s knowledge of the world as a point estimate: the pseudo-concentration. In

contrast, the Beta distribution in Bayes Bots maintains a distribution to model knowledge of the en-

vironment. This means that uncertainty in the robots’ knowledge is directly built in, which allows

us to drop the multi-tiered bioinspired approach of estimates, beliefs, and concentrations without

losing information vital to accurate decision-making.

In addition to binary classification problems, this Bayesian approach is potentially applicable to

a variety of inspection problems where observations of the target feature can be Bayesian-modeled.

For example, determining the average density of items in an environment, such as pests in an agri-

culture field, could be modeled with a Poisson likelihood, with each robot maintaining a represen-

tation of the density with a Gamma distribution. The Bayesian model is also easily extendable to

multiple features of the same type, which can be represented as a multi-dimensional distribution.

We can extend our model to classify an environment with multiple color features, as Chapter 4, by

using a Dirichlet distribution in place of our Beta posterior.
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Personally, I’m not afraid of a robot uprising. The

benefits far outweigh the threats.

Daniel H. Wilson

6
AHybrid PSO Algorithm for Multi-robot

Target Search and Decision Awareness

Robot collectives can work together to identify the locations of features in an unknown en-

vironment, such as determining the weakest points when inspecting a structure. When robots in

a swarm identify such locations and share the information across the whole group, the group can
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chain together actions into complex behavior. For example, a group of robots could be tasked with

building a human habitat onMars: first, they could collectively inspect a site to determine whether

it is a suitable region, as in Chapters 4 and 5, then identify a specific location in the area with stable

enough ground, then begin construction. While the preceding chapters focused on global classifica-

tion tasks in inspection, in this chapter we shift our attention to the second class of inspection tasks:

localizing a feature within an environment. This problem appears in many scenarios, such as iden-

tifying a high enough elevation to place a communications tower or a fault in a structure for repair.

In each case, there is scalar feature that can be detected at all points in the environment, and robots

can identify a location that is close enough to optimal (i.e., past a given threshold) to complete their

search task.

This problem is difficult: the feature under investigation, such as elevation or structural integrity,

often has a non-convex distribution or cannot be well-modeled. To guarantee locating the global

minimum, the optimal solution is exhaustive coverage43. In many real-world situations, though, a

location with a value past a threshold can be identified with non-coverage search algorithms. This

threshold-based task is typical in inspection, where a fault is defined by crossing a safety threshold, or

a target location is considered good enough if it means a pre-defined criteria. A robot collective can

then speed target localization by adding sensors. However, without global communication, robots

would need to independently find the target, wasting time and energy. Instead, robots can move

to facilitate communication, which enables collective decision-awareness in the group and allows

them to chain collective tasks such as habitat construction or informing a human operator of a fault

requiring repair.

In this chapter, we consider a specific case of this collective search problem: simulated robots seek

to (1) locate a position in an environment where a value is below a threshold and (2) disseminate

that information to the entire group, completing their task when all robots are aware of the target

and return to their deployment location. We model the environment as terrain generated by 2D Per-
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lin noise to create varying difficulties, which is classically used for terrain generation in computer

graphics. We present a hybrid algorithm designed to balance exploration of the environment, ex-

ploitation of previous observations, and communication with other robots in the swarm. We show

that this algorithm operates successfully within realistic constraints of real robot inspection systems,

such as limited run duration due to battery constraints, minimizing use of energy-intensive commu-

nication, and not requiring tight inter-individual coordination.

This work has been submitted to the International Conference on Intelligent Robots and Sys-

tems (IROS) for review and inclusion in the 2022 conference162.

6.1 Methods

6.1.1 Problem Definition

We present a problem in which a group of simulated robots identify a location with a value below a

threshold value v∗. Robots move in a bounded, monochrome arena composed of grid cells with val-

ues v ∈ N {0..255}, as shown in Fig. 6.1. The goal is for each robot to identify a target grid location

Xwhere the value v ≤ v∗; this knowledge obtained from its own observations or communicated by

other robots.

Robots begin at a home position in the corner of the environment, equivalent to being deployed

together, and the simulation is considered complete when all robots have returned to the home po-

sition. A robot will only return to its home position when it knows of a target location, and when it

believes that all other robots also know it. This collective awareness is essential for any task where the

robots must collectively change their action after a decision is made, including returning to a home

position for collection. If robots return before all others make a decision, this leaves the remaining

robot(s) to locate the source alone. Note that there can be more than one location with v ≤ v∗.

These discrepancies can be reconciled when robots collect themselves, because they return to the
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1 octave v≤1 3 octaves

5 octaves

Figure 6.1: Examples of simulated environments generated by 1, 3, and 5 octaves of Perlin noise, with overlay of values
v ≤ v∗ for decision threshold v∗ = 1. Robots must idenঞfy a locaঞon with a value below v∗. Bo�om right: 10 × 10
cell segment of environment, showing robots (blue dots), movement allowed in a single step (blue arrows), and example
communicaঞon range dc = 4 (green circle).

same location.

6.1.2 Robot Model

We use an abstract robot model that can move and observe in the grid world. Each robot occupies

a single cell, such that the grid discretization represents the sensing resolution of a robot; multiple

robots may occupy the same cell. At each time step, a robot can move to any of the neighboring

eight grid cells, while maintaining knowledge of its position. Accurate localization is a reasonable as-

sumption, given the ubiquity of GPS outdoors, increasing accuracy of SLAM algorithms. While34
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demonstrated that it is possible to perform PSO on robots without global positioning, its presence

enables accurate memory and reporting of the target location. Each robot can sense the value in its

current cell and the neighboring eight cells, enabling gradient estimates. Robots can also commu-

nicate with neighbors within a communication range dc, which we vary in the experiments. This

reflects a variety of communication with different ranges, from local line-of-sight light beaconing (as

in Kilobots80) to Bluetooth to cellular communication.

6.1.3 Environment Model

Environments are generated by monochrome, multi-octave 2D Perlin noise163, which is normalized

to cover [0, 256). This tunable procedure generates smooth, multi-scale textures and is used in com-

puter graphics to model naturally occurring phenomena, such as terrain and smoke. We chose it as

an abstract representation for many possible types of features that could be investigated using the

algorithms presented in this chapter. The multi-scale nature of Perlin noise allows us to easily tune

the environment complexity by adjusting the number of octaves (layers) to add smaller-scale noise in

the environment.

6.2 Algorithms

We created a two-stage algorithm, where robots switch from target localization (pre-decision) to dis-

semination (post-decision). In addition, we compare performance to a benchmark in which robots

conduct a pre-defined sweep over the environment.

6.2.1 Decision Algorithm

Movement: Each robot moves from the home corner to a random location in the environment

and is then assigned a random virtual velocityVt. Robots then switch to the movement algorithm
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described in Section 6.2.2. As long as the robot has not yet found a suitable target location Xwith

v ≤ v∗, the robot continues executing the pre-decision movement algorithm.

After identifying a location Xwith value v ≤ v∗, a robot switches to one of three possible move-

ment algorithms to disseminate the decision, as described in Section 6.2.3: (1) Flocking behavior

with other robots, (2) dispersing away from nearby robots, or (3) continuing the pre-decision move-

ment.

As robots can only move one cell per tick, executed paths are generated fromVt by Bresenham’s

line algorithm164.

Observation: Every tick, robots observe the value v at their current position Xt. If the observed

value is lower than any previous observation the robot made, it updates its personal best value vp, its

position Xp, and the observation time tp; if lower than any value that it knows, the robot updates its

global best value vg, position Xg, and time tg.

Communication: Throughout each trial, robots continuously communicate with any robots

within the communication range dc. Each robot maintains a table of the information received, con-

taining the following for each transmitting robot: its ID, best value vg′, value’s location Xg′, tick

the entry was added tadd, and the position X′ and velocityV′ of the transmitting robot when the

message was received. Entries in the table expire and are removed after a duration trx, increases the

robustness of the collective decision; if one or more robots prematurely returns to the origin or en-

tered a failure state, the remaining robots would still be able to complete their collective decision

without needing to hear from that robot again.

Robots send messages with the values described above, as well as their own neighbor table. When

receiving a message, a robot adds or updates its table entry for the sending robot and incorporates

the neighbor’s table by updating with any newer values. Note that tadd does not change for entries

in the received table, as this represents the time when the observation was first transmitted. For any

new values, the receiving robot will update vg, Xg, and tg if a lower value was received.
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Ending Conditions: There are two different experimental conditions determining when robots

complete their run. In the collective awareness condition, robots conclude their run and return to

the collection point when they believe that all robots know a target location. This is done by check-

ing whether all robots in their current neighbor table know a location with a value below v∗. When

all robots have returned, the trial is finished. In the second case, the robots have a fixed maximum

duration tmax. They may return to the collection point early if the collective awareness condition is

met, but they will always return to the collection point by tmax, regardless of collective awareness.

6.2.2 Pre-decision Movement

Robots balance exploration and exploitation with a combination of PSO and gradient descent, with

a variable velocity update interval. For each update interval Δt, a robot generates a new intermediate

velocityV(∗):

Vt+Δt(∗) = ωVt + cprtp (Xp − Xt) + cgrtg (Xg − Xt)+

cgdrgd∇f(Xt)

(6.1)

The first term, with inertia coefficient ω, limits the change in velocity that can occur in each up-

date. The second termmoves a robot toward its personally observed best location Xp from its cur-

rent location Xt, while the third term does the same for the best location known to the robot Xg,

either from its own observations or communication. These two terms have random coefficients

rp, rg ∼ U(0, 1), which make this a random walk biased toward the best known locations. If the

fixed coefficients cp, cg are too large, this walk will be biased too strongly toward a local minimum;

if too small, the observed optima play a negligible role in the movement. The final gradient term al-

lows for exploitation of local observations to move toward a minimum. For these grid-based robots,

the gradient is the direction of the neighboring cell with the smallest value. This term also employs a

random coefficient rgd ∼ U(0, 1).
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To generate the virtual velocity used for future updates, the intermediate velocityV(∗) is normal-

ized to a maximum speedVmax:

Vt+Δt = min
(
Vt+Δt(∗),Vmax

Vt+Δt(∗)

∥Vt+Δt(∗)∥

)
(6.2)

Each robot updates its virtual velocity after Δt ticks. Preliminary experiments showed that tra-

ditional PSO frequently failed by getting stuck in local minima. We therefore added this variable

update interval Δt to escape local minima.

Δt = min (128, tp) (6.3)

If vp was observed recently, this generates a local search around where the value was observed. To

prevent capture in local minima, Δt increases when no better values are observed, which increases

exploration. The maximum Δt of 128 ticks was selected from pilot experiments.

6.2.3 Post-decision Movement

During the initial pre-decision search, robots spread out to explore different regions. We investigate

whether a specialized movement strategy following an individual decision improves dissemination

of this knowledge through the group. We propose two options: (1) flocking, which creates a loosely

connected network and (2) dispersion, which causes mixing.

Flocking

Robots update their velocity according to Boids flocking strategy123, which was created to simulate

bird flocking. It has since been used extensively to create flocking behavior in robot swarms165,166,167

because robots can prioritize maintaining a connected network without strict enforcement by a cen-
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tral controller. The Boids model updates the agents’ velocities based on the combination of align-

ment toward, cohesion with, and separation from neighboring agents. Here, neighbors include

all robots communicated with since the last velocity update. We define alignment as matching the

sum of the neighbors’ velocity vectorsVk, and model cohesion and separation by the Lennard-Jones

force FLJ 168. A robot i updates its velocity based on the positions and velocities of its k neighbors:

Vt+1(∗)
i = 2Vt

i +
1
N

N∑
k=1

Vt
k + FiLJ (6.4)

and apply the normalization in Eq. 6.2.

FiLJ = 1
N

N∑
k=1

(
−

[
a
(

dt
|rik|

)a
− 2b

(
dt
|rik|

)b
])

r̂ik (6.5)

where rik is the vector between robots i and k, and dt is the target distance between robots. We fix dt

at 75% of the communication range to maintain a communication network. a and b are constants

that determine the intensity of the forces; we used the standard values of a = 12 and b = 6.

Dispersion

To disperse robots, we use only the separation/cohesion term of the velocity update in Eq. 6.4, but

set the target distance dt to 10 · dc. Robots become close enough to communicate for a single tick

and exchange messages, then separate again.

6.2.4 Benchmark Movement: Coverage Sweep

In addition to the algorithms described above, we also implemented a benchmark in which robots

perform a collective lawnmower sweep over the environment, as shown in Fig. 6.2. Robots begin

in the corner, then spread into a line separated by 2 cells to maximize coverage without overlapping
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Figure 6.2: Example paths of robots in benchmark coverage sweep. Robots sweep unঞl locaঞng where v ≤ v∗ and all
robots know the locaঞon.

sensing ranges. They then sweep over the whole environment until a target location is identified. If

all robots are in a connected network (which occurs for all cases with dc > 4), this information is

disseminated to the group within a few ticks, and all return to the origin. If not in communication,

the robots must sweep the entire environment before returning.

6.3 Experiments

We conducted experiments in Kilosim, an open-source simulator we developed for high-throughput

robot swarm simulations124. Additional code for this chapter is available on GitHub169. All simu-

lations were run in a 384 × 384 cell arena. This is large enough to allow a sparse density of robots,

with large-scale features and local noise. The precise dimensions were chosen as a multiple of the

robot group size to easily generate benchmark sweep paths.

In all simulations sets, we varied the following, which allow us to understand the effect of the

swarm and environment on the algorithm:

• Number of robots n: {8, 16, 32}

• Communication range dc: {4, 8, 16, 32, global}

• Environment octaves: {1, 3, 5}

84



Chapter 6. A Hybrid PSO Algorithm forMulti-robot Target Search and Decision Awareness

The varied octaves used to generate the environments correspond to three different difficulties

constructed from Perlin noise, as shown in Fig. 6.1, where each cell is a pixel in the generated image.

The parameters of the texture generation were a frequency (scale) of 100, lacunarity (change of scale

per octave) of 2.1, and persistence (change of intensity per octave) of 0.5. These were selected from

pilot experiments to provide a variety of feature scales that influenced robot behavior. We generated

50 images per difficulty, to be used with the corresponding trial. In all conditions, we used a fixed

threshold of v∗ = 1 to simplify experiments.

6.3.1 Pre-decision Simulations

We first conducted a parameter sweep to choose parameter values for the pre-decision movement

(Eq. 6.1). The goal was to identify values that minimized the time for a first robot to locate where

v ≤ v∗. In addition to the variables described above, our parameter sweep covered the following:

• PSO inertia ω: {0, 0.5, 0.75, 1.0, 10}

• PSO weights cp, cg: {0, 0.01, 0.025, 0.05, 0.1, 1}

• Gradient weight cgd: {0, 4, 8, 16}

• Maximum virtual speedVmax: {2, 25}

Parameter ranges were selected from pilot experiments. Note that the personal and collective

PSO weights are paired, to constrain the size of the parameter sweep. We conducted 50 trials for

each of the resulting 10,800 parameter combinations. Each trial was capped at 5,000 ticks; if a

source was not found in that time, we considered it a failure.
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6.3.2 Post-decision Simulations

After selecting the parameters for a single robot to locate the target, we conducted a parameter

sweep for the post-decision strategy. We varied the movement strategy, as described in Section 6.2.3.

The neighbor table timeout trx was fixed at 512 ticks to balance hearing from neighbors while avoid-

ing unnecessary delays. For the collective awareness ending condition, trials were capped at 20,000

ticks. For the time-based ending condition, we set the maximum duration tmax = 8000 ticks.

6.4 Results

6.4.1 Pre-decision

We first look at the effect of parameters on time for a single robot to locate a target, seen in Fig. 6.3.

Across all conditions, the performance of a 32 robot collective was hardly impacted, likely due to

the density of robots; regardless of the parameter selection, at least one robot was close enough to a

target location to quickly identify it. This demonstrates that the algorithm is scalable. Increasing the

number of robots is therefore the best way to improve performance, creating group that is robust to

parameter selection.

The trends in parameter effects held across all environments, so here we present the results for

environments with five octaves of Perlin noise, which is the most challenging, with small-scale noise

and local minima. The parameter effects also become more pronounced for smaller groups. We

found that inertia reduced performance (Fig. 6.3A), likely by minimizing the responsiveness of

robots to locally observed information. In physical robots, inertia is often inevitable, and we see that

plausible real-world inertia of ω = 1 had a small impact on localization time. A higher maximum

speedVmax (Fig. 6.3B) allows more variation in velocities, particularly when inertia exists while

preventing runaway values that occur if velocity is unbounded.
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Figure 6.3: Parameter effects on ঞme for first robot to locate target, for 5 octave environment. Lines and shading show
median and 25th/75th percenঞles, respecঞvely.
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Surprisingly, communication did not aid the search (Fig. 6.3C). As robots are exploring different

regions, receiving information from robots exploring elsewhere can interfere with the local search.

In fact, it could be advantageous to reduce or turn off communication before a robot makes a de-

cision, as long-range communication is energy-intensive. This differs from traditional PSO, where

global communication is assumed. Here, robots are not trying to congregate at the global maxi-

mum, but only identifying it. More significantly, robots have limited speed (unlike abstract par-

ticles), so physically distant information cannot be acted upon without a significant time delay to

move to that location.

We see the most significant parameter benefit from increasing the PSO weights cp,g (Fig. 6.3D).

Given that long-range communication was not beneficial, this shows that robots benefit most from

acting on local observations. However, if robots only moved toward their best observed position,

they could become trapped in local minima. We show below how our algorithm prevents this com-

plication.

We also see that increasing the octaves of Perlin noise in the environment increased the difficulty

of the task (Fig. 6.3F), likely due to more spatial noise (therefore increasing the number of local

minima) and often fewer positions below the decision threshold, seen in Fig. 6.1. However, in all

environments, we found that employing the gradient in the search strategy did not improve search

times (Fig. 6.3E). We hypothesize that this reactive component did not provide additional benefit

beyond PSO; when paired with the variable update interval, PSO already allowed robots to react

quickly to local information. This also demonstrates that robots do not need the more-advanced

ability to detect or estimate gradients to complete this type of search task.

In Fig. 6.4, we also see the benefits of our approach by comparing to conventional PSO, where

the velocity update interval is fixed. We ran a subset of our experiments (n = 8, dc = 32) with a

fixed update interval and no gradient, and selected the parameters with the lowest median time to

first target localization (cp,g = 1, ω = 1,Vmax = 25, Δt = 1). Our approach allowed robots to
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Figure 6.4: Success rate of locaঞng the target within 5,000 ঞcks, for our algorithm (variable update interval) and tradi-
ঞonal PSO (fixed updated interval). The fixed update interval did not allow robots to escape local minima in the higher
noise (higher octave) environments.

successfully identify the target in noisier environments by allowing them to escape local minima.

For traditional PSO, the short update interval trapped robots in these minima, while longer update

intervals created overshooting instead of local investigation.

6.4.2 Post-decision

From the pre-decision results, we selected the best set of parameters to use for the post-decision

simulations: cp,g = 1, cgd = 0, ω = 0,Vmax = 25.

In Fig. 6.5A-C, we can compare the success of different post-decision strategies. While initially

locating a target did not require large-scale communication, we see that the small groups with lim-

ited communication failed to consistently disseminate target information within the 20,000 tick

time limit. Overall, communicating target information while continuing to perform the search

algorithm yielded the worst performance; communication does not factor into this movement ap-

proach. Flocking performs better, adding a communication component that allows robots to main-

tain a loose network once they meet. This means that any information obtained by one robot in

the flock will be known to the whole group. Fig. 6.6 shows that flocking maintained the highest

count of neighbors heard from each tick because of the network created. However, this results in
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Figure 6.5: A-C: Success rate by post-decision movement type. Dispersion resulted in higher success by allowing robots
to communicate with more robots. D: Success rate for ঞme-based ending condiঞon using dispersion, with tmax = 8000
ঞcks. Allowing ঞme-based terminaঞon improved success, especially for low-communicaঞon regimes.

the robots covering a smaller area of the environment, meaning they are less likely to encounter in-

dividuals unaware of the target. While a pre-existing flock will allow information to be transmitted

within the group, the limitation in this scenario is that the robots must form a flock, which is non-

trivial for sparse robots.

Dispersion had the highest success rate, as the algorithm does not prioritizemaintaining com-

munication with the group, but communicating with as many individuals as possible. This can be

inferred from the higher success rate; communicating with more individuals resulted in spreading

target knowledge to more unique individuals, thus completing the trial within the time limit.

In Fig. 6.5D, we see that adding the additional constraint of a time limit to the post-decision

dispersion improved the success. If one robot knows of the target location, it can be disseminated

when all the robots are collected at the origin. This prevents cases where the task fails to complete

because a small number of robots are not communicated with before the 20,000 tick time limit,
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which was most likely to occur in settings with small communication ranges. This time-based end-

ing condition also represents a realistic system constraint, as robots typically have a limited mission

duration due to battery constraints. In contrast to employing only a time-based ending condition

8,000 ticks, in Fig. 6.7B we see that allowing completion with the collective awareness condition

allows for rapid decisions when communication is better — comparable to the collective awareness

ending condition seen in Fig. 6.7A— but creates a backstop to prevent failures where a subset of

robots do not learn of the target in the field.

In Fig. 6.7C, we see that the benchmark sweep is typically fastest, though for larger groups of

robots, the hybrid algorithm is competitive. Because the benchmark is a coverage algorithm, it will

also always locate a target. By maintaining a formation, any case with dc > 4 maintains a con-

nected communication network; if one robot finds the target, all robots will quickly learn it and the

task can be terminated. However, even with small communication ranges, we find that the sweep

completes the task faster; the robots only need to cover the environment, rather than continuing to

wander to communicate. With global communication, robots in Fig. 6.7A and B will complete the

task as soon as a single robot locates the target, meaning that they only utilize the variable-update-

interval PSO stage of the algorithm. Here they are faster than the benchmark because they more

quickly explore different areas of the environment, while robots in the sweep are always in the same

region. Despite the apparent success of the benchmark, it assumes perfect, synchronous motion of

the robots, which is difficult to achieve in groups of physical robots. In contrast, our hybrid algo-

rithm does not require synchronized movement, and unlike flocking, the post-decision dispersion

requires no coordinated movement.
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6.5 Conclusion

We have shown an algorithm for the multi-stage task of robot target-searching with a continuous

cue: locating the target, communicating this information to the rest of the group, and concluding

the task by returning to their deployment position. This demonstrates the potential of creating

complex behavior by thoughtfully combining variations on existing algorithms. In turn, this ability

opens the possibility to employ simple robot collectives in autonomous inspection tasks: robots in

this scenario were able to complete the task without centralized control, global communication, or

inter-robot motion coordination.

We found that a form of PSO with variable update intervals allowed robots to locate a target

without large-scale communication. To disseminate this, dispersion proved best at spreading in-

formation, rather than forming a flock to create and maintain a communication network. This

counter-intuitive result stems from two challenges: forming a flock is challenging for physically dis-

tributed robots, and maintaining network limits the ability to spread information across in a large

environment. When we also included a realistic time constraint representative of battery limitations,

we were able to nearly double the success rate for low-communication regimes, while maintaining

fast decision-making for larger groups with larger communication ranges. For these groups, our al-

gorithm was competitive with the benchmark sweep algorithm, but without tight constraints on

coordination.

While this algorithm was demonstrated in simulation with an abstract environment model, we

expect the results will hold on physical robots because it does not require complex coordination,

movement, or sensing by robots. In future work, we plan to implement this algorithm on physi-

cal robots and extend it to more complex environments and cues beyond our Perlin-based terrain

model.170 has demonstrated that PSO can be conducted with obstacles and inconsistent signal sens-

ing. We intend to apply our algorithm to fault inspection tasks containing similar challenges, with
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the goal of creating a system that can be used to inspect infrastructure such as bridges or space sta-

tions without requiring full environment coverage.
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Anything humans can do in space, robots can do better.

Trevor Paglen

7
Decision-making Applied to Space Station

Fault Inspection

In the preceding three chapters, I have presented algorithms to solve abstractions of inspection

problems. At the start of this dissertation, however, I presented a more concrete application of in-

spection: identifying structural faults on the exterior of a space station. This provides an oppor-
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Figure 7.1: Arঞst rendering of proposed NASA Lunar Gateway space staঞon. (Image courtesy of NASA Johnson Space
Center 173)

tunity to validate many aspects of the more abstract representations used so far. Inspecting space

station structure is already a topic of concern for space agencies. In 2019, slow air loss was detected

in the International Space Station (ISS). However, it took astronauts over a year to identify the lo-

cation of the leak, as the rate of air loss increased, and apply a patch171. While this particular leak

posed a minimal risk to the astronauts aboard, it demonstrates the inherent dangers in space station

living, especially as they age. Robotic inspection for space stations has the potential to identify faults

early, increasing safety and prolonging the operational lifespan of space stations.

These inspections are especially prescient as NASA develops the Lunar Gateway space station

this decade. An image of the proposed design can be seen in Fig. 7.1. The Gateway will serve as

a long-term hub in lunar orbit for human missions to the moon, which will require years of ser-

vice, possibly including unmanned periods where the space station will need to operate fully au-

tonomously172.
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Space station inspection presents particular domain-specific challenges. One could deploy fixed

sensor nodes on the surface of the space station, but these statically deployed sensors would be sub-

ject to failure from the same debris and cosmic rays that damage the space station itself. To provide

sufficient coverage of the surface, they would also need to be placed at high density, significantly

increasing cost and flight payload. In contrast, mobile robots can provide the same coverage with

fewer sensors, while providing robustness to failure of individual agents174. They can also be kept

safely inside the space station when not deployed.

We must also have robots capable of traversing the potentially complex exterior surface of a space

station. This surface can be classed as 2.5D: a curved surface with obstacles. Space stations are also

in microgravity, so we cannot use gravity to maintain the robots’ connection to the surface. This can

prove challenging for traditional wheeled robots. Therefore, we investigate the possibility of robot

inspection using a soft-bodied robot using an inchworm-like locomotion. This design is simple to

control, and its gait can overcome obstacles and variations in the surface. Our model system is the

Ferrobot robot175, seen in Fig. 7.2. In different variations of this robot, its gait is actuated by a shape

memory alloy (SMA) (Fig. 7.2a) or the faster dielectric actuator (DEA) (Fig. 7.2b). In both cases, it

attaches to the surface using switchable electropermanent magnets (EPMs) in the feet at each end

of the robot’s body. This allows the robot to attach to any ferromagnetic surface, regardless of the

presence of gravity.

In addition to movement, robots must be capable of detecting damage to the structure. We se-

lected vibration as our inspection modality, because it is well-studied for structural inspection ap-

plications176. Vibration sensing and analysis methods are based on detecting changes in vibration

response on a known structure or surface177,178. Vibration-based inspection is nondestructive and

noninvasive, making it safe for both healthy and damaged surfaces. Traditionally, however, vibra-

tion sensing has been used with fixed sensor networks179 or a single mobile robot180, rather than

leveraging the power of a group of robots as a mobile sensor network.
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(a) First ferrobot robot prototype, with EPM feet and SMA-
actuated so[ body. (Image courtesy of Jeremy Wanner.)

(b) Ferrobot robot with DEA-actuated body and EPM feet.
(Image courtesy of Bahar Haghighat.)

Figure 7.2: Ferrobot robot models used for space staঞon fault inspecঞon studies. Both feature a bending so[ body and
two EPM feet for a�aching to ferromagneঞc surfaces.

In this chapter, I present work toward developing a collective of autonomous robots for inspect-

ing the exterior surface of a space station such as the Lunar Gateway. First, I present applied physics-

based simulations representing vibration sensing for a multi-robot, multi-source inspection task on

a 2.5D surface. Second, I present hardware validation that the proposed sensing and movement are

achievable in microgravity.

This work was conducted in collaboration with the Space Exploration Initiative at the Mas-

sachusetts Institute of TechnologyMedia Lab. Particular contributions were made by Bahar Haghighat

Johannes Boghaert, through his master thesis109, and Fangzheng Liu. Portions of this work have

been published 5th International Symposium on Swarm Behavior and Bio-Inspired Robotics

(SWARM5)181. It was funded by a NASA Space Technology Research, Development, Demon-

stration, and Infusion (REDDI) grant.
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7.1 Multi-source Fault Localization on a Simulated Space Station
Surface

Our goal is to demonstrate that multi-robot fault inspection is possible on a simulated space station

surface, with realistic assumptions of the fault propagation and robot behavior. We particularly con-

sider the case where there are multiple possible faults on a surface with or without obstacles. Robots

must identify the locations of all faults, but the number of faults is not known a priori. We demon-

strate this using a collective of eight Ferrobot robots on 2.5D surface, where faults are represented

by propagating vibration sources. We solve this problem with a multi-part algorithm built on par-

ticle swarm optimization (PSO), combined with niche formation for source confirmation, and a

coverage target to guarantee that all faults have been discovered.

7.1.1 Problem Statement

We can formally define this inspection task as repeated localization of any number of failure sources

on a 2.5D surface in microgravity, using a collective of robots that use vibration signals as a cue, until

they meet a completion condition.

We define a failure source as a featured that disturbs normal functioning of a system. Detecting

a failure source requires knowing the functional state of the system to compare against. In a system

such as a space station, we expect that the system can be initially well-modeled and classified in its

functional state, creating a baseline against which to compare. We expect that failure sources such

as cracks and fissures on the surface will result in the creation of specific vibration profiles that are

detectable in, and classifiably distinct from, the presence of the endemic vibration of the system.

In our model of failure sources, we further simplify the points of mechanical failure as sources of

induced vibration. We consider this equivalent to sensing a signal that has already been filtered for

the distinct vibration signal of a fault. We model the vibration source as an external force applied to
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the surface, following a sinusoidal pattern at a frequency of 1 Hz and an amplitude of 1 N. This falls

within the mid-frequency range of the vibratory regime of the ISS182. The amplitude was chosen

such that the resulting acceleration values are within the ISS acceleration spectrum, ranging from

belowmicrogravity to 10 milli-g182.

The cue used by the robots is the magnitude of the acceleration signal measured during the

search. For inspecting space station surfaces, we hypothesize that the cue can be either an endemic or

induced vibration signal.

7.1.2 Simulation Framework

The simulation framework serves as a virtual environment in which to deploy and study our in-

specting robots. We use two main software components: ANSYS, which we use to create realistic

vibration signals propagating on a surface that models a floating orbital structure; and theWebots

robotic simulator133, which we use for simulating the robot locomotion, sensors, actuators, and the

environment surface. The pipeline and simulation setup is shown in Fig. 7.3.

WithinWebots, we created three main components:

1. A model of the bioinspired Ferrobot. This is comprised of a multi-segment piece-wise ap-

proximation of the SMA-actuated soft body shown in Fig. 7.2a. The body is approximately

20× 100× 7mm, and it uses an inchworming locomotion pattern.

2. Target surfaces that the robots move on and inspect. Examples of these can be seen in Fig. 7.6

and Fig. 7.7.

3. Fupervisor controller code that is responsible for passing the vibration data to the robots as

the move over the surface. depending on their location at each simulation step. The super-

visor is a black box that emulates an acceleration sensor, along with a processing unit that

returns to the robots the maximum observed accelerated amplitude at their current location.
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ANSYS vibration generation

Data file generation

Supervisor controller

Robot controller

Robot model

Physics Plugin

World environment
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Figure 7.3: Simulaঞon setup, with environment modeling components in blue and and Webots simulaঞon code in green.
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(a) Ferrobot extended, with front foot detached.

Rear ankle joint

Main body joint

(b) Steering angle for body and ankle joints.

Figure 7.4: Simulated ferrobot robot model in Webots.

Of these pieces, the robot model is the most complex component. For the sake of brevity, and since

this is not the focus of the current work, we will focus on the two pieces of the robot most relevant

to our validation: (1) the inchworming locomotion, and (2) the sensing and communication capa-

bilities of the simulated robots.

The robot model, as shown in Fig. 7.4, can move on flat and curved surfaces. The simulated

robot has two connectors on its feet that emulate the switchable EPM connectors on the physical

Ferrobot robot. The main body of the robot is a simulated flexible structure that bends along two

axes of the body section, allowing it to contract and extend for forward movement, as well as steer

left and right. It also bends at the two ankle joints to allow lifting the main body and adjusting the

position of the front foot relative to the landing surface. The inchworming locomotion pattern al-

lows the robot to achieve a step size of about half of its body size, or roughly 5 cm. The robots are

assumed to have knowledge of the map of the environment, including the location of walls and

obstacles, as well as their own location using a global positioning sensor. A loss-free global com-

munication channel is assumed between the robots. The robots use this communication to share

knowledge of faults, as well as their location on the map, which is then used to perform collision

avoidance with other robots.

Within ANSYS, we use Transient Analysis to subject our surface model to a transient sinusoidal

load case of 1 N at 1 Hz, which represents the vibration source. To represent the placement of the
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Total Acceleration
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(a) Acceleraঞon
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(mm)
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0.0089741
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0.013451 (max)

0.00019616 (min)

(b) Deformaঞon

Figure 7.5: Cylindrical surface models with elasঞc support boundary condiঞons in ANSYS.

surface in orbit, we use an elastic support boundary condition that involves the notion of founda-

tion stiffness, express in N/mm3. This is typically used to model soil-supported or submersed struc-

tures. We empirically set the foundation stiffness parameter to 0.0001N/mm3 by running a series of

simulations and qualitatively evaluating the results in discussion with a human expert. The defor-

mation amplitude for the applied load case is 0.013mm. Fig. 7.5 shows the surface models. In order

to simplify the data processing and export, we create text files that approximate the acceleration

signal observed in ANSYS with 2DGaussian distributions. This data is then retrieved by the su-

pervisor controller code inWebots and passed on to the robots depending on their location on the

surface at each simulation step, as shown in the block diagram structure in Fig. 7.3.

7.1.3 Algorithm

The space inspection task, as we formally defined in Section 7.1.1, can be interpreted as a general-

ization of the source or target localization problem that has been discussed throughout this disserta-

tion, particularly in Chapter 6, and in the literature105,102,183,184. The source localization problem

can be divided into three sub-problems: (1) finding a cue, (2) tracing the cue to localize the source,

and (3) confirming the source location. Our formal definition of the multi-source inspection task

involves repeating these steps, as well as a termination condition based on a predefined coverage
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threshold.

Algorithm 7.1 Inspection AlgorithmOverview
1: run Lévy RandomWalk (RW) ▷ Initialize
2: while coverage< 80% do
3: if robot in collision then ▷Collision avoidance
4: runCollision Avoidance (CA)
5: else if cue picked up then ▷ Local search
6: run Particle SwarmOptimization (PSO)
7: if cue is a source then ▷ Source confirmation
8: declare source
9: runDirectedWalk (DW) ▷Re-initialization
10: return to Lévy RandomWalk (RW)
11: else
12: run Lévy RandomWalk (RW) ▷Global search
13: update coverage ▷Update coverage

Source confirmation and reaching the coverage threshold require local and global search behav-

iors, respectively. We therefore define two goals for our inspection algorithm: (1) finding all sources

present in the environment as fast as possible, and (2) reaching the global coverage threshold for task

completion as fast as possible. Below, we describe our algorithm for the local search (i.e., the behav-

ior that results in localizing a source in the environment) and the global search (i.e, the behavior that

results in exploring the environment and reaching the coverage threshold for termination).

The algorithm structure is shown in Alg. 7.1. The algorithm contains four main control states,

which we describe briefly here and in more detail below. In the absence of any prior cue sensing, a

robot starts in the RandomWalk (RW) state, performing an unbiased Lévy random walk around

the environment until they sense a cue. Upon sensing a cue, the robot will begin a biased random

walk toward the source. in the Particle SwarmOptimization (PSO) state. Once a robot has localized

a source, it starts the DirectedWalk (DW) start and moves to an unexplored area of the environ-

ment. At any point, if the robot is closer than a threshold distance to an environment obstacle or
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another robot, it will switch to the Collision Avoidance (CA) state.

We use a multi-model variation of PSO, combined with a niche formation behavior, as our

heuristic local search component. The PSO velocity update for each individual in each dimension j

is as follows:

vt+1
j = ωvtj + cprtp

(
Xp
j − Xt

j

)
+ cgrtg

(
Xg
j − Xt

j

)
(7.1)

where Xt is the robot’s current position, and Xp and Xg are the positions of the best values observed

by the individual and the group, respectively. The inertia term ω and cp, cg are weights to balance

exploration and exploitation in order to find the maximum value of the cue— i.e., to locate the

source. We use parameter values ω = 0.15, cp = 0.35, cg = 0.5, selected from pilot experiments. To

account for the constraints of the robot model and its locomotion, we also introduce restrictions on

the velocity and the steering angle, which are passed to the robot controller.

Niche formation is part of the local search behavior, and it allows robots to confirm an identified

source location. Once a robot is in the vicinity of a source and moves to the PSO state, it forms a

two-robot niche by recruiting its nearest neighbor. The recruited robot then starts moving toward

the location of the identified source. Once it also perceives a cue, it performs a PSO walk toward the

source.

After localizing a source, a robot switches to a directed walk, moving toward an unexplored area

of the environment. This is achieved with a sliding window over the environment, to identify the

regions with the lowest coverage. The robot then performs a weighted sampling to select the target,

where the likelihood of selecting a goal decreases quadratically with the coverage percentage.

Collision avoidance is based on Artificial Potential Fields (APF)185. The obstacles to avoid are

created (1) from a map of the environment in which the boundaries of the area and the obstacles

are marked, and (2) by communicating with other robots to obtain their location on the map. Each

obstacle contributes a repulsion term to update the robot’s velocity. For a repulsive term i in dimen-
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sion j, we have:

ri,j = cweight ×
[
1
di
− 1

thresholdi

]
×

[
Xj − pointi,j

d3i

]
(7.2)

where di is the distance from the robot to obstacle i, Xj is the robot’s position in dimension j and

pointi,j is the closest point on obstacle i in dimension j. The threshold is the distance to the obstacle

below which the robot will engage in collision avoidance. Beyond this range, no collision avoidance

is performed with the obstacle. Threshold and weight values can differ depending on the type of

obstacle.

We require a coverage guarantee to ensure that, given enough time, all the sources that are present

in the environment will be found. To achieve this, we deploy a Lévy random walk for the global

search component. The Lévy walk assigns a random orientation to the robot and a random step

length, following a Lévy distribution. This exploratory random walk guarantees asymptotic full

coverage of the search space. We terminate the inspection earlier, based on a predefined coverage

threshold calculated from the coverage map.

All robots have access to a shared coverage map, which is used to compute the total coverage.

In a physical system, this could be achieved in a distributed system by robots sharing coverage over

their communication channel, and updating their internal maps accordingly. The coverage map is

represented as a grid of 10× 10 cm cells. As the robots move through the environment, they update

this shared map. It is updated based on a simplified sensor model, which represents sensing with a

2D Gaussian probability density function (PDF). To update the coverage map based on a robot’s

observation, the sensor model PDF is superimposed on the coverage map, center on the robot’s

position.
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Figure 7.6: Webots simulaঞon environments for Scenario 1.

Figure 7.7: Webots simulaঞon environments for Scenario 2.

7.1.4 Simulation Experiments

This section presents our experimental objectives and the two simulation scenarios used in our sim-

ulation experiments.

Experimental Objectives

We consider three primary objectives when evaluating the performance of the robot collective’s in-

spection. These are related to but distinct from the performance metrics described in the next para-

graph. In each experimental scenario, we would like to see whether the robot swarm succeeds at (1)

localizing all sources (localization success), (2) reaching the coverage threshold for task completion

(termination success), and (3) navigating the environment to follow cues without becoming trapped

or stuck (maneuverability success).

To quantify the performance on these three goals, we consider three performance metrics. These
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are based on similar metrics used in previous work on source localization and target search.20,186.

In each experimental scenario, we quantify (1) the source localization accuracy (i.e., the distance of

a robot-determined fault location from the fault’s ground truth location), (2) the time to find each

source in the environment, and (3) the time to reach the coverage threshold. To better understand

the collective’s dynamics, we also consider the time that robots spend in each of the algorithm’s four

primary control states: Collision Avoidance (CA), Particle SwarmOptimization (PSO), Random

Walk (RW), and DirectedWalk (DW).

Experimental Scenarios

We present two experimental scenarios to investigate a robot collective’s ability to inspect a multi-

source environment. This provides a tractable task that simplifies the complex real-world inspection

task we aim to emulate. In each case, we deploy a group ofN = 8 robots.

In Scenario 1, robots inspect a curved 2.5D cylindrical surface with a projected flat area of 4 × 4

m, shown in Fig. 7.6. The ANSYS simulation involves propagating vibrations through a full cylin-

der with a surface thickness of 2 mm, 4 m radius, and 6 m axial length. The vibration sources are

located at (2m, 3m), (1m, 1m), and (3.5m, 0.5m) on the projected surface reference frame. The

entire cylinder is subject to a foundation stiffness of 1× 10−4N/mm3, and the mesh is sized uniformly

with nodes of 100 × 100mm. At the location of the vibration source, we apply a load case with a si-

nusoidal of amplitude 1 N and frequency 1 Hz. The peak amplitude at steady state at each location

(i.e., after roughly 9.75s), is then considered for constructing the 2D Gaussian signal used inWebots

(see Section 7.1.2). The ANSYS simulations revealed that the vibration propagation on a cylindrical

surface is strongly biased along its length.

In Scenario 2, we extend Scenario 1 by increasing the geometric complexity with the addition of

three rectangular obstacles to the environment. These represent features that might be present on

the exterior surface of a space station, such as ridges or add-on modules. This environment can be
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Figure 7.8: Performance results for Scenario 1.
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Figure 7.9: Performance results for Scenario 2.

seen in 7.7. We expect the obstacles to affect the propagation of the vibration signal on the surface,

as well as the movement of the robots.

7.1.5 Results

We conducted 10 trials in each of the experimental scenarios described above. In each trial, the ran-

dom seed for each robot is fixed, but the starting positions are randomized. We conducted a larger

set of experiments with different robot group sizes to observe the effect of robot density on inspec-

tion performance, and selectedN = 8 robots to present. This provides a high enough density of

robots to leverage multi-robot behavior, while being low enough density to avoid excessive time

spent in collision avoidance with other robots. Looking at the overall performance of our algorithm

between the two experimental scenarios, we note how the swarm performance changes as the level of

complexity in the search space increases.
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The results are shown in Fig. 7.8 and Fig. 7.9. We consider the three metrics described in Section

7.1.4: source localization accuracy, time to locate sources and reach the decision threshold, and time

spent in each control state. As the environment complexity increases from Scenario 1 to Scenario

2, we see that this impacts the time to locate each source and the inspection completion time, as

defined by the time to reach the 80% coverage threshold, shown in Fig. 7.8B and Fig. 7.9B. The also

corresponds to the time spend in the RW state between the two scenarios, seen in Fig. 7.8C and

Fig. 7.9C.

In Fig. 7.8A and Fig. 7.9A, we see variation in the source localization accuracy, which which ex-

plain with three main considerations. First, when robots spend more time in PSO and less time in

CA, they have a higher chance of achieving more accurate source localization. Second, the weight

parameters used for PSO (Eq. 7.1) will affect the way that robots utilize their own observations

and those of their neighbors to locate the source. However, these parameters have not yet been op-

timized, and we hypothesize that the best parameters will depend on the overall geometry of the

environment. Finally, there is an interplay between the interval between observations (determined

by the robot’s step length), the shape and spread of the vibration cue, and the location of the sources

in the environment. These likely play a role in how accurately a source can be localized. Why hy-

pothesize that by optimizing the PSO parameters and the robot step size for a given search space, we

can improve source localization accuracy.

7.2 Hardware Validation for Space Station Inspection

Through our simulation work, we have demonstrated an algorithm that can locate fault sources,

but we still need to validate the assumptions that we made about the physical system. In particu-

lar, we must demonstrate that (1) the Ferrobot robots are capable of locomoting in a microgravity

environment, and (2) they can detect the relevant vibrations in the surface. We achieved this by con-

110



Chapter 7. Decision-making Applied to Space Station Fault Inspection

ducting locomotion and vibration-sensing studies in parabolic flights and ground-based control

experiments.

7.2.1 Experimental Setup

We created an 18 × 36 inch experimental box containing all experimental setups, which is shown

in Fig. 7.10 and Fig. 7.12. This was designed to meet the safety and containment requirements for

Zero-G flights. The enclosed upper portion of the box contains five ferromagnetic steel sheets of

varying widths, secured to the box frame at each end. Each sheet is dedicated to an individual experi-

mental setup; we will discuss the two used for Ferrobot locomotion and sensing.

Locomotion

As seen in the nearest plate in Fig. 7.10, a Ferrobot robot is attached to the metal sheet by its EPM

feet. An interface layer of Kapton tape is applied to sheet to prevent short circuits of the active DEA

and provide a low-friction surface for moving the EPM. The robot is attached to by a tether to a box

placed beneath the frame. This provides power and control for the robot. While we endeavored to

reduce the weight of the tether, it does create additional weight that the robot must pull when grav-

ity is present. However, in microgravity conditions, the tether has no weight to affect locomotion.

The control box provides three gait options for the robot: move forward, move in reverse, and

stop. The necessary control for the gait is shown in Fig. 7.11. The forward and reverse gaits are iden-

tical, except to switch which EPM is considered the front and which is the rear. Stopping the robot

turns on both EPMs to ensure that the robot is attached to the surface.

Movement consists of four stages. The robot begins with both EPM feet on, and therefore at-

tached to the surface. Then the front foot is turned off and detaches, while the DEA is turned on to

extend the robot body. With the body still extended, the front foot is reattached. The DEA is then
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Figure 7.10: Experimental box for Zero-G flight tesঞng. The walking Ferrobot is located on the nearest plate and teth-
ered to control boxes placed underneath the frame. (Image courtesy of Bahar Haghighat.)
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turned off, causing the body to contract, while rear foot is detached. Finally, the rear foot re-attaches

to complete the gait cycle. The duration of each of these phases, as well as the offset of EPM and

DEA switching, are shown in Fig. 7.11; these were determined from ground-based pilot testing.

Each EPM is turned on and off by applying a set of short, high current pulses through aMOS-

FET. As such, each is controlled by turning on a pair of pins that set both sides of the MOSFET,

indicated in Fig. 7.11 as H and L. This figure represents the EPM switching as a single pulse, but it is

actually composed of eight 50μs pulses separated by 20 ms. Multiple pulses are used to ensure that

the EPM is fully switched, and the 20 ms gap between pulses allows the high current capacitor to

recharge.

During parabolic flights, we tested the robot in three conditions: microgravity (approximately

0g), high gravity between microgravity parabolas (approximately 2g), and level flight (1g).

Sensing

Vibration sensing was conducted on a 20 cm wide steel plate within the experimental box, as shown

in Fig. 7.12. We conducted both ground-based and flight-based tests of the Ferrobot’s ability to

sense induced vibrations. At one end of the surface, a 1 Hz pounding is induced by a pounding

bar on a Rovable robot187. The pounding provides a vibration source comparable to that used in

the simulation portion of this chapter. By inducing this with another robot, this opens the door to

future extensions of coordinating the Ferrobot behavior as part of a more complex, heterogeneous

robotic inspection collective.

While the pounding Rovable was kept at a fixed position on the plate, a Ferrobot robot body

was placed at different locations along the sheet to investigate the range over which the pounding

is detectable. This robot body was not autonomously actuated, but was manually moved between

positions. An Adafruit BNO055 inertial measurement unit (IMU)188 was attached to the robot

body to detect the vibrations, and connected to a Raspberry Pi 3B+ collecting data at approximately
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is switched by a series of pulses on a pair of pins controlling a MOSFET. Times are not to scale.
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Figure 7.12: Experimental setup for tesঞng vibraঞon sensing on Zero-G flights and ground tesঞng. Ferrobot with at-
tached IMU is placed on a suspended metal sheet. It is moved to marked 7 cm intervals from the Rovable with a pound-
ing bar at the far end of the sheet. (Image courtesy of Stephen Boxall/ZERO-G.)
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Figure 7.13: Approximate Ferrobot step lengths in different gravity condiঞons.

50 Hz.

7.2.2 Microgravity Locomotion Results

We evaluated the performance of the Ferrobot walking by measuring its step length under differ-

ent gravitational loads, seen in Fig. 7.13. The step lengths were determined by visual inspection of

video footage on the flight, and estimated using a 1 cm square grid on the plate surface. Under 1g

conditions, we see that the robot achieves 3 cm long steps, but under a 2g load during the “pull”

of the parabolic flights, this is halved to 1.5 cm. This expected behavior is likely the result of addi-

tional frictional forces of the feet on the plate surface, as well as the additional weight of the tether

that provides power and control to the robot. In microgravity conditions, however, we see that the

step length increases to 5 cm. Without the weight of the robot body or tether constraining its move-

ment, the step length reached approximately 70% of the robot’s 7 cm bodylength. This is particu-

larly important, because microgravity is the intended use setting for this robot design. These results

validates that a soft robot with an inchworming locomotion pattern can successfully move over a

ferromagnetic surface in a variety of gravitational regimes.
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7.2.3 Vibration Detection and Signal Processing Results

We tested the detected vibration response in both ground testing, and for the full duration of a

Zero-G flight.

In Fig. 7.14, we can see the acceleration detected by the ferrobot IMU at different distances from

the pounding Rovable, as it is moved closer over time. In the top subfigure, we can see that there is

an increased magnitude of acceleration as the ferrobot as it is moved closer to the pounding. In the

bottom subfigure, we see that the base frequency of 1 Hz was not directly detected, possibly due to

damping in the metal plate or the compliant body of the robot. However, even at 35 cm from the

pounding, there is a clear signal at 12 Hz. This is possibly a harmonic of the 1 Hz pounding, or a

resonant frequency of the metal plate. Notably, this while the magnitude of this signal changes over
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Parabolas dominate the sensing. Bo�om: Spectrogram of frequencies detected during flight. 12 Hz signal is visible
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distance, the frequency response remains consistent.

In Fig. 7.15, we can see the acceleration detected during three sets of five parabolas on a Zero-G

flight. Due to an error in data collection, we cannot match this acceleration data to which parabolas

contained Rovable pounding, or the Ferrobot’s distance from the Rovable. However, we do not see

any clear signal in the spectrogram data that suggests a correlation between distance, pounding, and

the detected frequencies. Throughout the flight, the spectrogram shows the same 12 Hz signal visi-

ble in ground tests. We see that the 12 Hz signal power drops off during the microgravity parabolas,

which corresponds to the plane’s engine shutoff, and the 12 Hz signal is strongest in the 2g portions

of the flight. This suggests that the 12 Hz signal is not induced only by Rovable pounding (as was

used in the ground testing), but by the plane’s background vibration exciting the plate, which sup-

ports the hypothesis that the signal is a resonant frequency of the plate.
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The consistent vibratory response of the plate to vibration means that we can use it to character-

ize the metal plate. In this case, we could consider the 12 Hz signal to mean that the plate is healthy.

In contrast, we reasonably expect that a different configuration of the plate (such as adding a hole or

a crack) would result in a different resonant response to vibration, allowing us to classify this vari-

ation as “unhealthy“. We see that sufficient consistent background vibration, such as that of the

plane engines, could be used to classify the quality of the structure. McPherson et al. 182 showed

that background vibration is also present on the ISS, which could be used for similar classification in

space stations.

Together, these ground and flight experiments demonstrate that it is possible to classify the

health of a structure by its vibratory response to induced vibrations. We found that both Rovable

pounding and background plane vibrations generated a sufficient signal to allow the ferrobot IMU

to consistently detect a signature vibratory response of the metal surface, and this can be detected at

least 35 cm away from the vibration source.

7.3 Conclusion

The particular real world scenario that underlies our developments is the need for inspection of the

outer surface of long-term deployed spacecrafts. The goal of the inspection is to identify mechani-

cal failures such as fissures and cracks resulting from natural wear and tear of the structures. In this

chapter, we have demonstrated an algorithm to allow robots to detect multiple mechanical failure

sources in a physics-based simulation of a space station surface. With physical Ferrobot robots, we

have further demonstrated that these robots are capable of meeting the assumptions made in the

simulation: they are able to effectively perform inchworming locomotion in microgravity, and they

can utilize ambient excitation to identify resonant frequencies of a metal surface. Together, these

demonstrate the potential to use a small soft-bodied robot collective to evaluate the structural in-
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tegrity of a space station in orbit.

Our algorithmic work here focused on development and presentation of a framework for surface

inspection using a collective of robots. We deployed our proposed algorithm on a simulated swarm

of vibration sensing surface-crawling robots that use an inchworming gait for locomotion. Within

the simulated world where the robots perform the inspection task, we modeled the points of me-

chanical failure on the surface under inspection as sources of vibration. The robots then used the

signal that propagates through the surface as a cue for localizing the sources of vibration. We sim-

ulated realistic vibration signal propagation in ANSYS, then simplified data transfer by fitting 2D

Gaussian functions to the simulation results. In the Webots robotic simulator, we investigated the

performance of the swarm within two experimental scenarios comprising three sources on a 2.5D

cylindrical surface and three sources on a 2.5D cylindrical surface with additional obstacles on the

surface. Our algorithm succeeded at finding all the sources present in the search space in each of the

two experimental scenarios. Additionally, we showed that we are able to reach a predefined coverage

threshold as a termination criterion for the inspection task. Our results provide evidence supporting

the viability of robot swarms for inspection of 2.5D surfaces based on sensing vibration cues on the

surface.

Future work will involve extending our modeling and algorithmic framework in several ways,

as well as improving the hardware validation. First, we plan to develop a fully automated simula-

tion pipeline to facilitate randomized studies of a variety of environments. In particular, we plan

to automate the currently manual process of simulating the vibration signal within ANSYS and

transferring the corresponding data to a file format that is accessible by the simulated robots within

Webots. Second, we plan to implement realistic constraints in the communication range and band-

width used by the simulated robots withinWebots. Third, given a specific search environment, we

plan to leverage the automated simulation framework developed in this work to perform a parame-

ter optimization in order to find the set of parameters (i.e., number of robots, local search behavior
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parameters, global search behavior parameters, obstacle avoidance behavior parameters, etc.) that

result in the best desired performance metrics.

For future hardware validation, we can confirm our hypothesis that different surfaces will result

in different resonant responses that can be detected by the Ferrobot’s IMU. Additionally, we can

improve the locomotion of the Ferrobot robot. Currently, the simulation uses a fully soft-bodied

robot model, based on the SMA-actuated Ferrobot, while the hardware validation was conducted

with the DEA-actuated robot because of its faster walking speed. However, the current DEA-based

Ferrobot has only a single actuator and therefore cannot turn, as is required in the simulation.

Finally, a future algorithmic extension is extending this inspection work to a heterogeneous robot

swarm. As alluded to earlier, the combination of Ferrobots and Rovables could result in a more

capable swarm than either individual. First, they have different locomotion (inchworming com-

pared to magnetic wheels), which would make each suited to different regions of the surface; the

Ferrobot’s inchworming could allow it to cross small gaps in the surface, while the Rovable can

travel faster to more distant areas. In addition, the pounding investigation demonstrates a potential

for synergistic collaborations, where one robot could produce a signal which the other robot could

detect the propagation of.
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Divergence is interesting, but convergence is beautiful.

Johannes Boghaert

8
Conclusions and Future Work

At the outset of this dissertation, I presented an inspection challenge representative of the dirty,

dull, and dangerous task of inspection: How can we employ robots to find cracks in a space station,

such that we can maintain its structural integrity and prolong its operational lifespan? This is a chal-

lenge of matching the task to the right robot collective and the right algorithm to solve the task. We

can achieve this by developing algorithms that allow us to coordinate the movement of large groups
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of robots, share the right information, and integrate that information into collective decisions. We

have not yet deployed inspecting robots to space structures, but in this dissertation I have moved to-

ward this goal of creating algorithms for a broad variety of inspection tasks, including space station

inspection.

8.1 Contributions

Traditionally, the case for automation and robot applications is tasks that are “dirty, dull, and dan-

gerous,” which includes many inspection tasks. However, to efficiently deploy robots for these in-

spection tasks, we must first fundamentally understand the behavior and trade-offs involved in using

different types of robots and decision-making algorithms for inspection. This thesis helps lay the

groundwork for an abstracted understanding of swarm behavior in inspection tasks. I have demon-

strated algorithms for solving two different types of inspection tasks that represent the broad variety

of applications within inspection: global site classification and target search. We achieved this using

groups of simple robots with decentralized computation and communication. This results in algo-

rithms that are robust to individual failure, which can be deployed on cheap and simple hardware

for a variety of applications.

Historically, research in robotic inspection and swarm robotics have had limited intersection82.

However, the identifying features of robotic inspection— sensing, classification, and mobility —

map well onto the goals that researchers in swarm robotics are also trying to solve. In this disserta-

tion, I have helped to close that gap by creating inspection-oriented algorithms built on techniques

and behaviors within swarm robotics.

We are able to complete both types of tasks with fewer assumptions than previous work in multi-

robot inspection. Our robots required limited communication range and bandwidth, limited on-

board computation, and for global classification, they were not even capable of localization. All
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computation was distributed across the group, with no centralized controller required. These prin-

ciple also applied across a large range of group sizes, from 8 robots in Chapters 6 and 7 up to 100

robots in Chapters 4 and 5.

We were able to succeed at these tasks without relying on coverage, which meant that we did not

need to maintain close coordination between robots. Global site classification could be conducted

without localization by relying on random walks and integration of information frommany indi-

viduals. While target search required robots with the ability to localize themselves in the environ-

ment, in many cases we were able to achieve performance comparable to coverage without relying

on visiting every location in the environment— a strategy that can fail if robots cannot conduct a

coordinated search or if individuals fail.

8.2 Future Work

There remains much work to do before robot swarms are inspecting our infrastructure. One of

the most significant requirements is moving from simulation to reality. Chapter 4 presented val-

idation of abstract simulation work on Kilobot robots, and Chapter 7 showed the beginnings of

real world space station inspection. However, there remain significant gaps that the simulations do

not address, such as the uncertainty of localization and noisy sensing. There are also many failure

modes that we cannot model or predict, but would only present themselves on physical hardware in

a true deployment setting. In addition, most of the simulations presented are abstract, representing

the world as a monochrome 2D environment. In reality, the nature of the cue will vary depending

on the inspection task, which can impact algorithmic choices. Future simulations can aim to more

closely match features of real-world inspection tasks, which will also help to close the simulation to

reality gap.

In both simulation and hardware implementations, we see potential for improving the perfor-
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mance of our algorithms through improved optimization. The primary tool used for performance

tuning in this thesis was parameter sweeps. However, when tuning multiple parameters simultane-

ously to understand their interactions, the number of parameter combinations scales poorly. This

becomes intractable for algorithms with many parameters, and limits testing to faster-than-realtime

simulation, rather than on physical hardware. In the future, we can employ advanced techniques

for parameter tuning, such as evolutionary algorithms189, reinforcement learning190, and even the

meta-solution of employing established PSO techniques for high-dimensional parameter tuning191.

These techniques can also be incorporated into a combination of simulation and hardware experi-

ments to maintain a close connection between the two.

In the future, we also hope to develop a more systematic approach to selecting the optimal move-

ment and decision-making algorithms for certain inspection situations. As more swarm robotic

inspection tasks are investigated, we can develop a more sophisticated taxonomy of inspection tasks

than this dissertation’s binary division of global classification and target search. For example, this

could incorporate the nature of the cue (e.g., is it continuously or intermittently sensed, and can it

be modeled). Combined with a taxonomy of swarm behaviors, as discussed in Chapter 2, we can

develop a mapping between inspection tasks and algorithms that will allow for faster development

of algorithms for particular robot capabilities, group sizes, and features of the task itself. This simpli-

fication will aid the adoption of swarms for inspection tasks in the real world.

Thus far, this dissertation has presented inspection with homogeneous swarms, where all robots

in the group are the same. Employing robots with different capabilities can increase the capabili-

ties of the group, but introduces additional challenges in algorithmic design. At the end of Chap-

ter 7, we suggested a particular heterogeneous swarm application, where Ferrobots would team with

wheeled Rovable robots to inspect a space station surface. This introduces differences in locomo-

tion— a Rovable can move quickly, but a Ferrobot can overcome more obstacles — as well as po-

tential different sensing payloads. It is also possible to introduce different computation and commu-
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nication capabilities to a swarm, creating a semi-centralized group to take advantage of the benefits

of both centralization and decentralization, such as reduced computational complexity and robust-

ness, respectively. In general, however, the challenges of reasoning about heterogeneous groups have

made the topic under-studied within both inspection and swarm robotics literature192,29. The case

of Ferrobot and Rovable collaboration presents a clear use case and division of labor that will serve

as a valuable test bed for further investigating the potential of heterogeneous swarms in inspection.

8.3 Complex Swarm Tasks from Fundamental Behaviors

Real world applications of robot collectives are typically complex tasks. As this study of robotic

inspection has demonstrated, many fundamental behaviors must be combined to complete the task.

Many other collective multi-robot tasks are similarly complex, like a robotic construction task that

can require locating materials, collectively transporting them, and assembling a variety of complex

sub-components like electrical wiring, structural framing, and facing. In fact, inspection itself can

even become a sub-behavior of robotic construction to validate the resulting structure.

The swarm behavior taxonomy discussed in Chapter 2 shows a current understanding of these

fundamental behaviors built from existing literature within the swarm robotics research commu-

nity. However, this is only the start. By building stronger connections between swarm robotics

researchers and application domain researchers, we can develop a stronger understanding of both

the complex application tasks and the fundamental behaviors that can be used to compose them. We

can begin to construct a hierarchical understanding of swarm behavior: Application tasks are com-

posed of fundamental behaviors, which in turn can be achieved by different algorithms depending

on the nature of the robots, group size, and environment.

As we move into a world where robots are not operating in isolation, and where these groups of

robots will be completing increasingly varied tasks, it is important not to develop collective algo-
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rithms with a myopic focus on a particular task, but rather maintain a perspective on the broader

algorithmic context. This will allow algorithms to be developed faster for a broader variety of appli-

cations.
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