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Abstract— Groups of robots can be tasked with identifying
a location in an environment where a feature cue is past a
threshold, then disseminating this information throughout the
group – such as identifying a high-enough elevation location to
place a communications tower. This is a continuous-cue target
search, where multi-robot search algorithms like particle swarm
optimization (PSO) can improve search time through paral-
lelization. However, many robots lack global communication in
large spaces, and PSO-based algorithms often fail to consider
how robots disseminate target knowledge after a single robot
locates it. We present a two-stage hybrid algorithm to solve
this task: (1) locating a target with a variation of PSO, and
(2) moving to maximize target knowledge across the group. We
conducted parameter sweep simulations of up to 32 robots in
a grid-based grayscale environment. Pre-decision, we find that
PSO with a variable velocity update interval improves target
localization. In the post-decision phase, we show that dispersion
is the fastest strategy to communicate with all other robots. Our
algorithm is also competitive with a coverage sweep benchmark,
while requiring significantly less inter-individual coordination.

I. INTRODUCTION

Robot collectives can work together to investigate features
of an unknown environment, such as determining the highest
elevation or most stable location in an environment. When
robots in a swarm identify such locations and share the
information across the whole group, the group can chain
together actions into complex behavior. For example, a group
could be tasked with building a human habitat on Mars: first,
they collectively classify an environment to determine if it is
a suitable region (as in [1]), then identify a specific location
in the area with stable enough ground, then ultimately begin
construction. This problem appears in many scenarios, such
as identifying a high enough elevation to place a commu-
nications tower or a weak point in a structure for repair. In
each case, there is a scalar feature that can be detected by
point sensors everywhere in the environment, and robots can
identify a location that is close enough to optimal (i.e., past
an a priori known threshold) to complete their search task.

This problem is difficult: the feature under investigation,
such as elevation or ground stability, often has a non-
convex spatial distribution or cannot be well-modeled. To
guarantee locating the global optimum, exhaustive spatial
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coverage is required [2]. However, when it is sufficient
to find a location with a value past a threshold – as in
the examples above – identifying a satisfactory location is
sufficient to complete the search, without needing to sense all
locations. In addition, a robot collective can then speed target
localization: additional robots contribute spatially distributed
sensing. Communication within the group prevents robots
needing to independently find the target, which would waste
time and energy. For robots without global communication
capabilities, individuals can move to facilitate communica-
tion; this enables collective decision-awareness in the group
and allows them to chain collective tasks such as habitat
construction.

In this paper, we consider a specific case of this collective
search problem: simulated robots seek to (1) locate a position
in an environment where a value is below a threshold and (2)
disseminate that information to the entire group, completing
their task when all robots are aware of the target and return
to their deployment location. We model the environment
as terrain generated by 2D Perlin noise to create varying
difficulties. We present a hybrid algorithm designed to bal-
ance exploration of the environment, exploitation of previous
observations, and communication with other robots in the
swarm. We show that this algorithm operates successfully
within realistic constraints of real robot systems, such as
limited run duration due to battery constraints, minimizing
use of energy-intensive communication, and not requiring
tightly coupled inter-individual movement.

II. RELATED WORK

Multi-robot target search algorithms take a variety of
approaches, depending on the cue a target propagates through
the environment. When a cue is sparse, approaches typically
rely on efficiently coordinating individual searches, such
as discrete Markov chains [3] or variations on frontier
search [4], [5]. If guarantees about target localization are
required, this is best achieved by a complete coverage
algorithm [6] like multi-robot boustrophedon coverage (i.e.,
a sweeping pattern) [7]. If the cue is intermittent but its
propagation can be modeled, as in odor source localiza-
tion, a model can be employed in probabilistic search al-
gorithms [8], including following an information gradient
in infotaxis [9], [10], [11], conducting Bayesian swarm
searches [12], [13], or using hidden Markov methods [14].
However, these approaches tend to fail if reality diverges
from the environmental feature model [15].

Alternatively, when a cue for the target can be con-
tinuously sensed, it is easier to search without a model.



If a gradient of the cue is available, gradient descent or
chemotaxis allows a group of robots to find a global op-
timum, as in [16]. When a gradient alone is insufficient and
the feature’s distribution cannot be accurately modeled, this
leaves heuristic search approaches to locate an optimum.

The most common multi-robot heuristic search strategies
are variations of particle swarm optimization (PSO). In the
original PSO, abstract particle agents employ a biased ran-
dom walk toward their individual and collective best obser-
vations, resulting in non-guaranteed convergence at a global
optimum [17]. PSO has been applied to real multi-robot
systems; [18], [19] demonstrated that PSO could be used
to identify a feature with convex distribution, despite limited
movement speed and communication range. There are also
hybrid algorithms that incorporate PSO into their search,
including hybrid ant colony optimization (ACO/PSO), where
virtual pheromone deposits augment direct communica-
tion [20]; PSO plus fruit fly optimization (MFPSO) to avoid
local minima and improve search speed [21]; and adaptive
robotics PSO (AR-PSO), which considers obstacle avoidance
and a mechanism to escape local minima.

These search strategies typically have one of two possible
stopping conditions: (1) when a single robot has located
the target, or (2) in PSO, when all robots converge at the
target. Without global communication, the first termination
condition does not consider knowledge across the rest of
the collective. PSO-based convergence requires all robots to
identify the target by travelling to the location, rather than
learning indirectly by communication. Without global com-
munication, this limits the reach of the already-converged
robots to aid convergence of the remaining robots.

To disseminate knowledge of the target without requir-
ing convergence, robots could travel as a connected net-
work. This can be accomplished with distributed spanning
trees [22] or creating a k-connected network to maintain at
least k neighbors [23]. Both of these algorithms can guar-
antee maintaining a network, but they are computationally
heavy and unrealistic to implement on robots with limited
computation, such as Kilobot robots. A simpler alternative
is Boids flocking [24], where robots create a flock with a
target neighbor distance smaller than their communication
range. This creates a looser, easier to implement network,
though without guarantees.

III. METHODS
A. Problem Definition

We investigate a problem in which a group of simulated
robots identify a location with a value below a threshold
value v∗. Robots move in discrete time through a bounded,
monochrome arena composed of grid cells with values v ∈ N
{0..255} (Fig. 1). The goal is for each robot to identify a
target grid cell X with value v ≤ v∗; this may be obtained
from its own observations or communicated by other robots.

Robots begin at a home position in the corner of the
environment, equivalent to being deployed together, and the
simulation is considered complete when all robots have
returned to the home position. A robot will only return to its

1 octave v≤1 3 octaves

5 octaves

Fig. 1. Examples of simulated environments generated by 1, 3, and 5
octaves of Perlin noise, with overlay of values v ≤ v∗ for decision threshold
v∗ = 1. Robots must identify a location with a value below v∗. Bottom
right: Illustration of 10 × 10 cell segment of the environment, showing
robots (blue dots), sensing range (light gray squares), movement allowed
in a single step (blue arrows), and example communication range dc = 4
(green circle).

home position when it knows of a target location, and when
it believes that all other robots also know it. This collective
awareness is essential for any task where the robots must
collectively change their action after a decision is made,
including returning to a home position for collection. If
robots return before all others make a decision, this leaves
the remaining robot(s) to locate the source alone. Note that
there can be more than one location where v ≤ v∗, mean-
ing that robots may find different locations X∗. However,
these discrepancies can be reconciled when robots collect
themselves, because they return to the same location.

B. Robot Model

We use an abstract robot model that can move and observe
in the grid world. Each robot occupies a single cell, such
that the grid discretization represents the sensing resolution
of a robot; multiple robots may occupy the same cell. At
each time step, a robot can move to any of the neighboring
eight grid cells, while maintaining knowledge of its position.
Accurate localization is a reasonable assumption, given the
ubiquity of GPS outdoors and increasing accuracy of SLAM
algorithms. While [18] demonstrated that it is possible to
perform PSO on robots without global positioning, its pres-
ence enables accurate memory and reporting of the target
location. Each robot can sense the value in its current cell
and the neighboring eight cells, enabling gradient estimates.
Robots can also communicate with neighbors within a com-
munication range dc, which we vary in the experiments. This
reflects a variety of communication with different ranges,



from local line-of-sight light beaconing (as in Kilobots [25])
to Bluetooth to cellular communication.

C. Environment Model

Environments are generated by monochrome, multi-octave
2D Perlin noise [26], which is normalized to cover {0..255}.
This tunable procedure generates smooth, multi-scale tex-
tures and is used in computer graphics to model naturally
occurring phenomena, such as terrain and smoke. We chose
it as an abstract representation for many possible types
of features that could be investigated using the algorithms
presented in this paper. The multi-scale nature of Perlin
noise allows us to easily tune the environment complexity
by adjusting the number of octaves (layers) to add smaller-
scale variation in the environment.

IV. ALGORITHMS

We created a two-stage algorithm, where robots switch
from target localization (pre-decision) to dissemination (post-
decision). In addition, we compare performance to a bench-
mark in which robots conduct a pre-defined sweep over the
environment.

A. Decision Algorithm

Movement: Each robot moves from the home corner to
a random location in the environment and is then assigned
a random virtual velocity V t. Robots then switch to the
movement algorithm described in Section IV-B. As long as
the robot has not yet found a suitable target location X
with v ≤ v∗, the robot continues executing the pre-decision
movement algorithm.

After identifying a location X with value v ≤ v∗, a robot
switches to one of three possible post-decision movement al-
gorithms to disseminate the decision, as described in Section
IV-C: (1) Flocking behavior with other robots, (2) dispersing
away from nearby robots, or (3) continuing the pre-decision
movement.

As robots can only move one cell per tick, executed paths
are generated from V t by Bresenham’s line algorithm [27].

Observation: On every tick, robots observe the value v
at their current position Xt. If the observed value is lower
than any previous observation a robot made, it updates its
personal best value vp, its position Xp, and the observation
time tp; if lower than any value that it knows, the robot also
updates its global best value vg, position Xg, and time tg.

Communication: Throughout each trial, robots continu-
ously communicate with any robots within the communica-
tion range dc. Each robot maintains a table of the information
received, containing the following for each transmitting
robot: its ID, best value vg′, value’s location Xg′, tick the
entry was added tadd, and the position X ′ and velocity V ′

of the transmitting robot when the message was received.
Entries in the table expire and are removed after a duration
trx, increasing the robustness of the collective decision; if one
or more robots prematurely returns to the origin or enters
a failure state, the remaining robots would still be able to

complete their collective decision without needing to hear
from that robot again.

Robots send messages with the values described above, as
well as their own neighbor table. When receiving a message,
a robot adds or updates its table entry for the sending robot
and incorporates the neighbor’s entire table by updating with
any newer values, as determined by tadd. For any new values,
the receiving robot will update vg, Xg, and tg if a lower
value was received. Note that tadd does not change for entries
in the received table, as this represents the time when the
observation was first received.

Ending Conditions: There are two different experimental
conditions determining when robots complete their run. In
the collective awareness condition, robots conclude their run
and return to the collection point when they believe that all
robots know a target location. This is done by checking
whether all robots in their current neighbor table know
a location with a value below v∗. When all robots have
returned, the trial is finished. In the second case, the robots
have a fixed maximum duration tmax. They may return to the
collection point early if the collective awareness condition is
met, but they will always return to the collection point by
tmax, regardless of collective awareness.

B. Pre-decision Movement

Robots balance exploration and exploitation with a combi-
nation of PSO and gradient descent, with a variable velocity
update interval. For each update interval ∆t, a robot gener-
ates a new intermediate two-dimensional velocity V t+∆t(∗):

V t+∆t(∗) = ωV t + cpr
t
p

(
Xp −Xt

)
+ cgr

t
g

(
Xg −Xt

)
+

cGDrGD∇f(Xt)
(1)

The first term, with inertia coefficient ω, limits the change
in velocity that can occur in each update. The second term
moves a robot toward its personally observed best location
Xp from its current location Xt, while the third term does
the same for the best location known to the robot Xg, either
from its own observations or communication. At each update,
these two terms have different random coefficients rp, rg ∼
U(0, 1), which make this a random walk biased toward the
best known locations. If the fixed coefficients cp, cg are
too large, this walk will be biased too strongly toward a
local minimum; if too small, the observed optima play a
negligible role in the movement. The final gradient term
allows for exploitation of local observations to move toward
a minimum. For these grid-based robots, the gradient is the
direction of the neighboring cell with the smallest value. This
term also employs a random coefficient rGD ∼ U(0, 1).

To generate the virtual velocity used for future updates, the
intermediate velocity V t+∆t(∗) is normalized to a maximum
speed Vmax:

V t+∆t = min

(
V t+∆t(∗), Vmax

V t+∆t(∗)

‖V t+∆t(∗)‖

)
(2)

Each robot updates its virtual velocity after ∆t ticks. Pre-
liminary experiments showed that traditional PSO frequently



failed by getting stuck in local minima. We therefore added
this variable update interval ∆t to escape local minima.

∆t = min (128, t− tp) (3)

where tp is the time when the personal best value vp was
observed. If tp was recent, this generates a local search
around where the value was observed. To prevent capture
in local minima, ∆t increases when no better values are
observed, which increases exploration. The maximum ∆t of
128 ticks was selected from pilot experiments.

C. Post-decision Movement

During the initial pre-decision search, robots spread out
to explore different regions. We investigate whether a spe-
cialized movement strategy following an individual decision
improves dissemination of this knowledge through the group.
We propose three options: (1) flocking, which creates a
loosely connected network; (2) dispersion, which causes
mixing; and (3) continuing pre-decision movement, to in-
dependently locate the target.

1) Flocking: Robots update their velocity according to
Boids flocking strategy [24], which was created to simulate
bird flocking. It has since been used extensively to create
flocking behavior in robot swarms [28], [29], [30] because
robots can prioritize maintaining a connected network with-
out strict enforcement by a central controller. The Boids
model updates the agents’ velocities based on the combi-
nation of alignment toward, cohesion with, and separation
from neighboring agents. Here, neighbors include all robots
communicated with since the last velocity update. We define
alignment as matching the sum of the neighbors’ velocity
vectors Vk, and model cohesion and separation by the
Lennard-Jones force FLJ [31]. A robot i updates its velocity
based on the positions and velocities of its k neighbors, and
applies the normalization in Eq. 2:

V
t+1(∗)
i = 2V t

i + 1
N

N∑
k=1

V t
k + FiLJ (4)

FiLJ = 1
N

N∑
k=1

(
−
[
a

(
dt

|rik|

)a

− 2b

(
dt

|rik|

)b
])

r̂ik (5)

where rik is the vector between robots i and k, and dt is
the desired distance between robots. We fix dt at 75% of the
communication range to maintain a communication network.
a and b are constants that determine the intensity of the
forces; we used the standard values of a = 12 and b = 6.

2) Dispersion: To disperse robots, we use only the sep-
aration/cohesion term of the velocity update in Eq. 4, but
set the desired target distance dt to 10 · dc. Robots become
close enough to communicate for a single tick and exchange
messages, then separate again.

D. Benchmark Movement: Coverage Sweep

In addition to the algorithms described above, we also im-
plemented a benchmark in which robots perform a collective
lawnmower sweep over the environment, as shown in Fig. 2.

Fig. 2. Example paths of eight robots in benchmark coverage sweep.
Robots begin in the bottom left, then sweep until locating where v ≤ v∗

and all robots know the location.

Robots begin in the corner, then spread into a line separated
by 2 cells to maximize coverage without overlapping sensing
ranges. They then sweep over the whole environment until a
target location is identified. If all robots are in a connected
network (which occurs for all cases with dc > 4), this
information is disseminated to the group within a few ticks,
and all return to the origin. If not in communication, the
robots must sweep the entire environment before returning.

V. EXPERIMENTS

We conducted experiments in Kilosim, an open-source
simulator we developed for high-throughput robot swarm
simulations [32]. Additional code for this paper is available
on GitHub [33]. All simulations were run in a 384 × 384
cell arena. This is large enough to allow a sparse density
of robots, with large- and small-scale value variation. The
precise dimensions were chosen as a multiple of the robot
group size to easily generate benchmark sweep paths.

In all simulations sets, we varied the following, which
allowed us to understand the effect of the swarm and
environment on the algorithm:
• Number of robots n: {8, 16, 32}
• Communication range dc: {4, 8, 16, 32, global}
• Environment octaves: {1, 3, 5}
By varying the number of robots, we can investigate our

algorithm’s scalability across different densities of robots.
The varied octaves used to generate the environments corre-
spond to three different difficulties constructed from Perlin
noise, as shown in Fig. 1, where each cell is a pixel in the
generated image. The parameters of the texture generation
were a frequency (scale) of 100, lacunarity (change of scale
per octave) of 2.1, and persistence (change of intensity per
octave) of 0.5. These were selected from pilot experiments
to provide a variety of feature scales that influenced robot
behavior. We generated 50 images per difficulty, to be used
with the corresponding trial. In all conditions, we used a
fixed threshold of v∗ = 1 to simplify experiments.

A. Pre-decision Simulations

We first conducted a parameter sweep to choose parameter
values for the pre-decision movement (Eq. 1). The goal was
to identify values that minimized the time for a first robot to
locate where v ≤ v∗. In addition to the variables described
above, our parameter sweep covered the following:
• PSO inertia ω: {0, 0.5, 0.75, 1.0, 10}
• PSO weights cp and cg: {0, 0.01, 0.025, 0.05, 0.1, 1}



Fig. 3. Parameter effects on time (in ticks) for first robot to locate target,
for 5 octave environment. Lines and shading show median and 25th/75th
percentiles, respectively.

• Gradient weight cGD: {0, 4, 8, 16}
• Maximum virtual speed Vmax: {2, 25}
Parameter ranges were selected from pilot experiments.

Note that the personal and collective PSO weights are
paired, to constrain the size of the parameter sweep. We
conducted 50 trials for each of the resulting 10,800 parameter
combinations. Each trial was capped at 5,000 ticks; if a
source was not found in that time, we considered it a failure.

B. Post-decision Simulations

After selecting the parameters for a single robot to lo-
cate the target, we conducted a parameter sweep for the
post-decision strategy. We varied the movement strategy, as
described in Section IV-C. The neighbor table timeout trx
was fixed at 512 ticks to balance hearing from neighbors
while avoiding unnecessary delays; this was selected from
pilot testing, where we found that the algorithm performance
was stable across a broad range of values. For the collective
awareness ending condition, trials were capped at 20,000
ticks. For the time-based ending condition, we set the max-
imum duration tmax = 8000 ticks.

VI. RESULTS

A. Pre-decision

We first look at the effect of parameters on time for
a single robot to locate a target, seen in Fig. 3. Across
all conditions, the performance of a 32 robot collective
was hardly impacted, likely due to the density of robots;
regardless of the parameter selection, at least one robot
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Fig. 4. Success rate of locating the target within 5,000 ticks, for our
algorithm (variable update interval) and traditional PSO (fixed updated
interval). The fixed update interval did not allow robots to escape local
minima in the higher noise (higher octave) environments.

was close enough to a target location to quickly identify it.
This demonstrates that the algorithm is scalable. Increasing
the number of robots is therefore the best way to improve
performance, creating a group that is robust to parameter
selection.

The trends in parameter effects held across all environ-
ments, so here we present the results for environments with
five octaves of Perlin noise, which is the most challenging,
with small-scale noise and local minima. The parameter
effects also become more pronounced for smaller groups. We
found that inertia reduced performance (Fig. 3A), likely by
minimizing the responsiveness of robots to locally observed
information. In physical robots, inertia is often inevitable,
and we see that plausible real-world inertia of ω = 1 had
a small impact on localization time. A higher maximum
speed Vmax (Fig. 3B) allows more variation in velocities,
particularly when inertia exists while preventing runaway
values that occur if velocity is unbounded.

Surprisingly, communication did not aid the search (Fig.
3C). As robots are exploring different regions, receiving in-
formation from robots exploring elsewhere can interfere with
the local search. In fact, it could be advantageous to reduce
or turn off communication before a robot makes a decision,
as long-range communication is energy-intensive. This dif-
fers from traditional PSO, where global communication is
assumed. Here, robots are not trying to congregate at the
global maximum, but only identifying it. More significantly,
robots have limited speed (unlike abstract particles), so
physically distant information cannot be acted upon without
a significant time delay to move to that location.

We see the most significant parameter benefit from in-
creasing the PSO weights cp,g (Fig. 3D). Given that long-
range communication was not beneficial, this shows that
robots benefit most from acting on local observations. How-
ever, if robots only moved toward their best observed posi-
tion, they could become trapped in local minima. We show
below how our algorithm prevents this complication.

We also see that increasing the octaves of Perlin noise
in the environment increased the difficulty of the task (Fig.
3F), likely due to more spatial variation (therefore increasing
the number of local minima) and often fewer positions
below the decision threshold, seen in Fig. 1. However, in
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Fig. 5. A-C: Success rate by post-decision movement type. Dispersion
resulted in higher success by allowing robots to communicate with more
robots. D: Success rate for time-based ending condition using dispersion,
with tmax = 8000 ticks. Allowing time-based termination improved
success, especially for low-communication regimes.

all environments, we found that employing the gradient in
the search strategy did not improve search times (Fig. 3E).
We hypothesize that this reactive component did not provide
additional benefit beyond PSO; when paired with the variable
update interval, PSO already allowed robots to react quickly
to local information. This also demonstrates that robots do
not need the more-advanced ability to detect or estimate
gradients to complete this type of search task.

In Fig. 4, we also see the benefits of our approach by
comparing to conventional PSO, where the velocity update
interval is fixed. We ran a subset of our experiments (n = 8,
dc = 32) with a fixed update interval and no gradient, and
selected the parameters with the lowest median time to first
target localization (cp,g = 1, ω = 1, Vmax = 25, ∆t =
1). Our approach allowed robots to successfully identify the
target in noisier environments by allowing them to escape
local minima. For traditional PSO, the short update interval
trapped robots in these minima, while longer update intervals
created overshooting instead of local investigation.

B. Post-decision

From the pre-decision results, we selected the best set of
parameters to use for the post-decision simulations: cp,g = 1,
cGD = 0, ω = 0, Vmax = 25.

In Fig. 5A-C, we can compare the success of different
post-decision strategies. While initially locating a target did
not require large-scale communication, we see that the small
groups with limited communication failed to consistently dis-
seminate target information within the 20,000 tick time limit.
Overall, communicating target information while continuing
to perform the search algorithm yielded the worst perfor-
mance; communication does not factor into this movement
approach. Flocking performs better, adding a communication
component that allows robots to maintain a loose network
once they meet. This means that any information obtained
by one robot in the flock will be known to the whole group.

−250 0 250 500 750 1000 1250 1500

Time from 1st decision (ticks)

0

5

10

A
ve

ra
ge

ne
ig

hb
or

co
un

t

Disperse

Pre-decision

Flock

Fig. 6. Example average number of neighbors for different post-decision
dissemination movement strategies. Dispersion had the lowest average
neighbor count, and the highest success rate.

8 16 32
Number of Robots

G
lo

ba
l

32
16

8
4

C
om

m
un

ic
at

io
n

R
an

ge

800 752 679

1731 1514 1361

7483 1950 1584

20000 5820 2018

20000 20000 20000

A: Disperse
(Collective awareness)

8 16 32
Number of Robots

762 758 610

1826 1510 1345

7280 1701 1580

8000 8000 1788

8000 8000 8000

B: Disperse
(Time-based)

8 16 32
Number of Robots

2345 1237 955

2345 1243 955

2352 1255 955

2500 1482 2024

6559 3531 2038

C: Benchmark
(Coverage)

103

104

C
om

pl
et

io
n

T
im

e
(m

ed
ia

n)
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ments, on a logarithmic scale. Collective awareness and time-base ending
conditions both used dispersion post-decision, but adding a time limit to the
search reduced average search time.

Fig. 6 shows that flocking maintained the highest count
of neighbors heard from each tick because of the network
created. However, this results in the robots covering a smaller
area of the environment, meaning they are less likely to
encounter individuals unaware of the target. While a pre-
existing flock will allow information to be transmitted within
the group, the limitation in this scenario is that the robots
must form a flock, which is non-trivial for sparse robots.

Dispersion had the highest success rate, as the algo-
rithm does not prioritize maintaining communication with
the group, but communicating with as many individuals as
possible. This can be inferred from the higher success rate;
communicating with more individuals resulted in spreading
target knowledge to more unique individuals, thus complet-
ing the trial within the time limit.

In Fig. 5D, we see that adding the additional constraint
of a time limit to the post-decision dispersion improved the
success. If one robot knows of the target location, it can be
disseminated when all the robots are collected at the origin.
This prevents cases where the task fails to complete because
a small number of robots are not communicated with before
the 20,000 tick time limit, which was most likely to occur in
settings with small communication ranges. This time-based
ending condition also represents a realistic system constraint,
as robots typically have a limited mission duration due to
battery constraints. In contrast to employing only a time-



based ending condition of 8,000 ticks, in Fig. 7B we see that
allowing completion with the collective awareness condition
allows for rapid decisions when communication is better –
comparable to the collective awareness ending condition seen
in Fig. 7A – but creates a backstop to prevent failures where
a subset of robots do not learn of the target in the field.

In Fig. 7C, we see that the benchmark sweep is typically
fastest, though for larger groups of robots, the hybrid algo-
rithm is competitive. Because the benchmark is a coverage
algorithm, it will also always locate a target. By maintaining
a formation, any case with dc > 4 maintains a connected
communication network; if one robot finds the target, all
robots will quickly learn it and the task can be terminated.
However, even with small communication ranges, we find
that the sweep completes the task faster; the robots only
need to cover the environment, rather than continuing to
wander to communicate. With global communication, robots
in Fig. 7A and B will complete the task as soon as a single
robot locates the target, meaning that they only utilize the
variable-update-interval PSO stage of the algorithm. Here
they are faster than the benchmark because they more quickly
explore different areas of the environment, while robots in
the sweep are always in the same region. Despite the apparent
success of the benchmark, it assumes perfect, synchronous
motion of the robots, which is difficult to achieve in groups
of physical robots. In contrast, our hybrid algorithm does
not require synchronized movement, and unlike flocking, the
post-decision dispersion requires no coordinated movement.

VII. CONCLUSION

We have shown an algorithm for the multi-stage task of
robot target-searching with a continuous cue: locating the
target, communicating this information to the rest of the
group, and concluding the task by returning to their deploy-
ment position. This demonstrates the potential of creating
complex behavior by thoughtfully combining variations on
existing algorithms. In turn, this ability opens the possibility
to employ simple robot collectives in autonomous tasks like
inspection: robots in this scenario were able to complete the
task without centralized control, global communication, or
inter-robot motion coordination.

We found that a form of PSO with variable update
intervals allowed robots to locate a target without large-
scale communication. To disseminate this, dispersion proved
best at spreading information, rather than forming a flock to
create and maintain a communication network. This counter-
intuitive result stems from two challenges: forming a flock is
challenging for physically distributed robots, and maintaining
a network limits the ability to spread information across in
a large environment. When we also included a realistic time
constraint representative of battery limitations, we were able
to nearly double the success rate for low-communication
regimes, while maintaining fast decision-making for larger
groups with larger communication ranges. For these groups,
our algorithm was competitive with the benchmark sweep
algorithm, but without tight constraints on coordination.

While this algorithm was demonstrated in simulation with
an abstract environment model in discrete time and space,
we expect the results will hold on physical robots because
it does not require synchronicity, nor complex coordination,
movement, or sensing by robots. In future work, we plan
to implement this algorithm on physical robots and extend
it to more complex environments and cues beyond our
Perlin-based terrain model. [34], [35] have demonstrated
that PSO can be conducted with obstacles and inconsistent
signal sensing. We intend to apply our algorithm to fault
inspection tasks containing similar challenges, with the goal
of creating a system applicable to inspecting infrastructure
such as bridges or space stations. We also plan to extend this
algorithm as part of complex, chained behaviors; rather than
returning to the origin to reconcile locating different target
positions, robots could reconcile these differences in the field
and collect at a target location to, for example, repair a fault
that they identified during their inspection task.
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