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Abstract— We present a distributed Bayesian algorithm for
robot swarms to classify a spatially distributed feature of
an environment. This type of “go/no-go” decision appears in
applications where a group of robots must collectively choose
whether to take action, such as determining if a farm field
should be treated for pests. Previous bio-inspired approaches
to decentralized decision-making in robotics lack a statistical
foundation, while decentralized Bayesian algorithms typically
require a strongly connected network of robots. In contrast,
our algorithm allows simple, sparsely distributed robots to
quickly reach accurate decisions about a binary feature of their
environment. We investigate the speed vs. accuracy tradeoff
in decision-making by varying the algorithm’s parameters.
We show that making fewer, less-correlated observations can
improve decision-making accuracy, and that a well-chosen
combination of prior and decision threshold allows for fast
decisions with a small accuracy cost. Both speed and accuracy
also improved with the addition of bio-inspired positive feed-
back. This algorithm is also adaptable to the difficulty of the
environment. Compared to a fixed-time benchmark algorithm
with accuracy guarantees, our Bayesian approach resulted in
equally accurate decisions, while adapting its decision time to
the difficulty of the environment.

I. INTRODUCTION

In order for groups of robots to cooperate in complex
scenarios, they must be able to collectively make choices at
multiple decision points. In many cases, this takes the form
of a “go/no-go” problem: each robot must select the best of
two possible choices based on some incomplete information
available to them. In swarms of robots, this challenge is
compounded: cooperative behavior relies on all the robots
quickly coming to the same decision. This problem is preva-
lent in potential applications, such as robots collaboratively
identifying and eliminating pests in an agriculture field, or
a collective of robots deciding where to build a habitat for
a future human colony on Mars. Solving this problem may
require a decentralized approach if the robots cannot rely
on a central process for collecting information and taking
decisions. It is challenging to have a large, decentralized
group of robots quickly and accurately make collective
decisions, especially in the binary go/no-go scenario.
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Swarm robotics often draws inspiration from biology for
distributed decision-making, since binary decisions are com-
mon in biology. Insect-based algorithms are inherently de-
centralized and scalable, making them well-suited for robotic
collectives. Bees and ants are known for house-hunting,
in which the entire colony must select between multiple
possible new nest sites or risk splitting the colony [1], [2].
These strategies typically use random pairwise interactions
and positive feedback to push the group to a decision, in
which higher-quality options are more heavily communicated
and more visited, pushing the colony to consensus.

Several groups have explored robotic decision-making
inspired by insect house-hunting. This approach proved
effective in a house-hunting task completed by Kilobot
robots [3], [4]. Valentini et al. also applied inspiration from
the honeybee waggle dance to an environmental perception
task, in which a group of robots reached consensus about
whether an environment was colored with mostly black or
mostly white squares [5]. However, this approach yields a
transient consensus on the majority color of the environment,
rather than a group-wide go/no-go commitment. Previously,
our group extended this algorithm to allow for committed
decisions [6], inspired by quorum sensing in bacteria, where
a decision was triggered by a continuous estimation value
crossing a threshold. We also improved the speed and
accuracy of decisions by employing positive feedback, in
which robots communicated their decisions. In both robot
house hunting and perception, a trade-off was observed
between the decision speed and accuracy in selecting the best
choice. However, these bio-inspired algorithms include many
parameters and are not mathematically grounded, making
it difficult to intuitively understand the speed vs. accuracy
tradeoff and make optimal parameter selections.

In contrast, Bayesian algorithms provide a statistically
grounded approach to the challenge of sensor- and decision-
fusion in distributed sensor networks and multi-agent sys-
tems. Many agents collect samples of information that must
be integrated to form a single estimate or decision. Early
approaches involved distributed sensors, but decision-making
was centralized [7]. More recently, decentralized Bayesian
information fusion has been successful across a variety of
domains, such as target tracking [8], source localization [9],
self-localization [10], and event classification [11], demon-
strating its broad applicability across tasks and domains.
While many of these approaches scale across the number of
agents [12], they often rely on assumptions such as maintain-
ing a fixed or strongly connected network[13], or their goal is
continuous state estimation, rather than a go/no-go decision.



We look to extend the decentralized Bayesian approach to
go/no-go decisions on simple, spatially-distributed robots
that communicate locally but are not always connected.

We present a novel Bayesian algorithm for a robot col-
lective to achieve fast, accurate decisions about their en-
vironment. We abstractly model the go/no-go decision by
tasking robots with classifying monochrome environments
as filled with a majority of black or white, as in [5], [6],
and shown in Fig. 1; this represents any scalar environmental
feature that could be observed by robots. Each robot behaves
as a Bayesian estimator, while exchanging and integrating
observations from nearby robots. We show that collective
decisions are possible even with few assumptions about the
capabilities of the robots: a collective of 100 simulated Kilo-
bot robots is able to achieve accurate decisions even when
they are sparsely distributed and have locally-limited sensing
and communication. We find that positive feedback improves
both the speed and accuracy of decisions, and that each robot
making fewer observations can improve decision accuracy
by reducing their spatial correlations. In addition, a well-
chosen regularizing prior allows for a lower decision-making
threshold with a small accuracy cost. We also demonstrate
that the algorithm’s speed naturally adapts to the difficulty
of the environment. Finally, we compare this approach to
a fixed-time benchmark algorithm that provides theoretical
accuracy guarantees even in worst-case environments.

II. METHODS

A. Problem Definition

We present a problem in which k robots complete a binary
classification task. Robots are placed in a bounded black and
white environment, where the proportion of white within the
space is the environment’s fill ratio f , as shown in Fig. 1.
The goal is to collectively decide whether the majority of the
environment is filled with black or white (i.e, is the fill ratio
above or below 0.5). Because the problem is symmetric, we
show results for environments where f > 0.5.

Classifying an environment results in a trade-off between
the time for all robots to decide and the collective accuracy
of the decision. This is particularly pronounced in the most
challenging environments, where the fill ratio is close to 0.5;
the small difference between black and white area makes it
more difficult to distinguish than extreme fill ratios.

This formulation represents an abstraction of real-world
problems. In an agricultural application, the white regions
would be analogous to pest-damaged areas of a field, with
the goal of determining if a field requires pest treatment.
Alternatively, the color could represent mineral deposits in a
Mars exploration mission. In each case, the goal is to make a
go/no-go decision about a single, spatially distributed feature.

B. Robot Model

We investigate this decision-making problem using Kilo-
bots as our model robot platform [14], whose capabilities
narrow the complexity of possible decision algorithms. Kilo-
bots are able to sense their environment with an ambient
light sensor located on the top of the robot, allowing them
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Fig. 1. Examples of simulated environments with different fill ratios f .
The goal is for robots to determine whether the environment is mostly white
(f > 0.5) or mostly black (f < 0.5). Top: Image from a Kilosim simulation
with f = 0.52, containing 100 robots, each able to communicate within a
radius of 3 bodylengths. Right: Kilobot robot, which is the model for the
simulated robots. Bottom: Example environments with different fill ratios.

to distinguish black, white, and gray regions of an envi-
ronment projected from above onto a bounded 2D arena.
These small robots (33 mm diameter) lack complex bearing
or localization capabilities. Therefore, we rely on pseudo-
random walks. The robots also have limited communication
bandwidth and range; they can broadcast 9-byte messages to
robots within approximately 3 bodylengths.

In environmental classification problems, robots are typi-
cally sparse. 100 Kilobots cover only 1.5% of the 2.4×2.4 m
arena (≈ 75 × 75 bodylengths) available for the physical
robots. Therefore, we cannot rely on assumptions required
in many distributed algorithms, like maintaining a strongly
connected network. However, we demonstrate that it is
possible to design robust decision-making algorithms even
for robots with limited capabilities.

III. ALGORITHMS

We developed a Bayesian algorithm that allows simulated
Kilobot robots to classify black and white environments.
The goal was to classify the fill ratio f of the environment
as mostly white (a decision of df = 1) or mostly black
(df = 0). Each robot employs a Bayesian model of the
fill ratio and makes decisions using credible intervals of
the posterior distribution. We also compare to a benchmark
algorithm that provides accuracy guarantees for even the
worst-case scenarios, sacrificing speed for accuracy.

A. Bayesian Decision-Making Algorithm

The algorithm followed by each robot is shown in Alg. 1.



Robots make binary color observations C of their environ-
ment, which we model as draws from a Bernoulli distribution
where the probability of observing white is the fill ratio:

C ∼ Bernoulli(f) (1)

Each robot models the unknown fill ratio f of the environ-
ment as a Beta distribution:

f ∼ Beta(α, β) (2)

resulting in the posterior update for each observation:

f | C ∼ Beta(α+ C, β + (1− C)) (3)

Initialization: Robots are placed uniformly in the arena
with random orientation. Each robot’s prior model is initial-
ized with Beta(α, β), where both parameters are initialized
as α0, a parameter determining how regularizing the prior
is. Each robot also sets its observation index i = 0.

Movement: For the duration of the trial, each robot
performs a pseudo-random walk to cover the arena, defined
by segments of movement in a straight line, followed by
a random turn. The durations of the straight segments are
drawn from an exponential distribution with mean of 240
s, while turns are drawn uniformly from 0 − 2π. This
parameterization was previously determined in [6]. The edge
of the bounded environment is defined by a gray region,
as seen in Fig. 1. If a robot detects gray light, it turns
continuously until it exits the border region.

Observation: Each robot makes an observation C every
τ seconds: C = 1 if white, C = 0 if black, and ignoring
gray observations. The posterior of the fill ratio is updated
with the observation as in Eq. 3 and i increments by 1.

Communication: After a robot makes its first observation,
it begins broadcasting its most recent observation index i
and observed color C. While continuing to move, observe,
and broadcast, all robots also listen for messages from
neighboring robots. Upon receiving a new observation, the
receiver updates its posterior as with its own observations.

Decision: Each robot checks whether its decision criterion
is met after every posterior update. The credible threshold
pc defines the probability mass of the posterior that must
lie on one side of 0.5 in order for a decision to be made.
If the posterior’s cumulative distribution p at 0.5 passes the
criterion (p ≥ pc), a decision is made that the environment
is black (df = 0), as most of the probability is below 0.5.
Conversely, if (1 − p) ≥ pc (i.e., most of the probability
mass is above 0.5), the environment is classified as white
(df = 1). This is the robot’s irreversible go/no-go decision.

After a decision is made, a robot will broadcast its decision
in place of its observation if positive feedback (u+) is used.
Otherwise, it will continue to transmit its observations.

This algorithm depends on four parameters:
• Observation interval τ (s) is the time between ob-

servations, where τ > 0. Shorter observation intervals
mean collecting observations quicker, but results in
observations that are less spatially distributed. Longer
intervals result in more independent observations.

Algorithm 1 Bayesian Decision-Making Algorithm
Input: Observational interval τ , credible threshold pc, prior
parameter α0, positive feedback indicator u+, robot UID id
Output: Binary classification of environment df

1: Init counter of white observations α = α0

2: Init counter of black observations β = α0

3: Init observation index i
4: Init incomplete decision df = −1
5: Init dictionary of received observations s = {ID : (0, 0)}
6: for t ∈ [1, T ] do
7: Perform pseudo-random walk
8: if τ divides t then
9: C ← observed color (0, 1)

10: α← α+ C
11: β ← β + (1− C)
12: i← i+ 1

13: Let m = (id′, i′, C ′)
14: if s(id′) 6= m(id′) then
15: α← α+ C ′

16: β ← β + (1− C ′)
17: if df = −1 then
18: Let p denote the cumulative distribution function

of Beta(α+ α0, β + α0) at 0.5.
19: if p > pc then
20: df ← 0
21: else if (1− p) > pc then
22: df ← 1

23: if d 6= −1 and u+ then
24: Broadcast message (id, i, df )
25: else
26: Broadcast message (id, i, C)

• Credible threshold pc is the minimum probability mass
of the posterior that must lie on one side of 0.5 in
order to make a decision. We assume 0.5 ≤ pc < 1.
Higher credible thresholds require more observations
before enough probability amasses to make a decision.‘

• Prior parameter α0 is a positive integer used for both
shape parameters of each robot’s prior distribution of
f . Setting α0 = 1 forms a uniform prior, while α0 >
1 creates a symmetric prior peaked around 0.5. This
regularizing prior indicates a lower prior belief that the
fill ratio is near 0 or 1, analogous to having previously
made α0 − 1 black and α0 − 1 white observations.

• Positive feedback u+ is a boolean indicating whether
robots will transmit their decision df in place of
their most recent observation C after they make deci-
sions. Positive feedback is used effectively for decision-
making in insects and bacteria. This feedback reinforces
decisions made by robots that decide early, but it may
push the group to the wrong decision or split the group
if early-deciding robots conflict.

While there is intuition behind the trends of these param-
eters individually, the interactions and optimal choices are
unknown. We use a parameter sweep to investigate the effect



of parameter values on speed and accuracy, as well as the
interactions between the parameters.

B. Benchmark Decision-Making Algorithm

We now describe a fixed-time algorithm for which param-
eter settings can be derived that guarantee correct decision-
making to an arbitrary accuracy in an arbitrary environment
of known size, as shown in Alg. 2. Given a worst-case fill
ratio that we wish to be able to detect, and a desired accuracy
(i.e., tolerance for incorrect decisions), we can compute the
number of weakly correlated samples S that a single robot
requires to make a decision. If we instead have k robots,
robots first independently collects samples (Phase 1), and
then disseminate information among each other (Phase 2).
The observation phase must be long enough for each robot
to collect at least S/k samples; the second phase must be
long enough for all pairs of robots to communicate, such
that each robot has a total of at least S samples.

1) Phase 1: Sample Collection: We first select a worst-
case fill ratio f̂ (i.e., how close to 0.5) to be able to
distinguish. To make a correct decision, we need enough
samples that the sample mean is within ε = 2 · |f − 0.5| of
the true fill ratio. For a given confidence level 1 − δ/2, we
need a total of S uncorrelated1 samples:

S ≥
4f̂(1− f̂)Z

(
1− δ

4

)2
ε2

(4)

using the Z-score of the standard normal distribution. This is
derived from the two-tailed 1− δ/2 confidence interval using
a Gaussian approximation of the Binomial distribution [15].

The S/k samples each robot collects must be uncorrelated
in order for Eq. 4 to hold. If nothing is known about
the distribution of colors within the environment, we must
design for the worst case, where samples are highly locally-
correlated (i.e. a non-homogeneous environment). Then, each
robot must move τ ≥ tmix between samples, where the
mixing time tmix is a property of the size and topology
of the environment, and the nature of the random walk.
Conversely, if the environment is homogeneous (i.e., if each
cell is colored independently of its neighbors, as in 1), then
the observation interval τ need only be long enough that a
robot does not sample more than once from the same grid
cell consecutively. Therefore, the Phase 1 duration is S/k · τ .

2) Phase 2: Sample Communication: Each robot now has
S/k samples but needs S samples to make an accurate deci-
sion. We assume that the robots have IDs, can ignore repeated
information, and have a communication radius rcomm. When
robots A and B are within rcomm of each other, A collects
and stores B’s samples if it has not done so already, and
vice-versa. We must now determine how long robots need to
move such that each pair of robots has interacted, to some
desired confidence level 1− δ/2. This notion is captured by
the meeting time, tmeet, which is defined as the worst-case

1As mentioned above, there is a very weak correlation between samples.
However, by fine-tuning the time between samples τ , we can make sure
that the probability of sampling a white cell is within f ± ε/4. This error
is small enough to ensure our calculations hold.

expected time for two robots to meet, regardless of their
starting location. Note that tmeet is a function of: (i) the
environment size; (ii) the environment topology; (iii) the
nature of the random walk; (iv) the communication radius.
To guarantee with probability 1− δ/2 that all pairs of robots
have communicated, we require a Phase 2 duration of:

tcomm = 2 log
(
k2

δ

)
tmeet (5)

The probability that two random walks meet after 2tmeet

steps is, by the Markov inequality, at least 1/2. Thus, the
probability that any two given random walks do not meet
after log(k2/δ) intervals of length 2tmeet is 1

2log(k2/δ)
= δ

k2 .

Taking the union bound over all
(
k
2

)
pairs gives that the

total probability of failure is at most k(k−1)
2

δ
k2 ≤

δ
2 . [16].

Combining the δ/2 failure risk from each phase, we can
guarantee the decision will be correct with probability 1−δ.

Algorithm 2 Benchmark Decision-Making Algorithm
Input: Total communication time tcomm, observation interval
τ , robot UID id, number of samples S/k
Output: Binary classification of environment df

1: Init counter of white observations α = 0
2: Init counter of black observations β = 0
3: Init dictionary of received samples s = {ID : (0, 0)}
4: for t ∈

[
1, Sk τ

]
do

5: Perform pseudo-random walk
6: if τ divides t then
7: C ← observed color (0, 1)
8: α← α+ C
9: β ← β + (1− C)

10: s(id) = (α, β)
11: for t ∈

[
S
k τ,

S
k τ + tcomm

]
do

12: if new message (id′, α′, β′) then
13: s(id′) = (α′, β′)

14: Broadcast message (id, α, β)

15: Let αT denote the sum of the α values in s
16: Let βT denote the sum of the β values in s
17: if βT > αT then
18: df = 0
19: else
20: df = 1

IV. EXPERIMENTS
We conducted experiments testing both algorithms in

Kilosim, an open-source Kilobot simulator we developed that
is able to run at over 700× real speed for 100 robots [17],
allowing us to thoroughly investigate the parameter space.
A demonstration video is available on YouTube [18]. All
experiments were conducted with 100 robots in a 2.4 m ×
2.4 m arena. To investigate the performance in settings of
varying difficulty, we tested five different fill ratios f : 0.52,
0.55, 0.6, 0.7, 0.8. Fill patterns (as seen in Fig. 1) were
generated for each trial by pseudo-randomly filling a 10×10
grid of squares with black or white to match the fill ratio.
Trial duration was capped at 50,000 s (≈ 14 hours) each.



A. Bayesian Algorithm

We conducted a parameter sweep across the following
values, running 100 trials for each of the resulting 7,280
parameter combinations.
• τ (s) : 1, 5, 10, 15, 20, 25, 50, 75, 100, 150, 200, 250, 300
• pc : 0.9, 0.95, 0.98, 0.99
• α0 : 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 50
• u+: True, False

B. Benchmark Algorithm

For the benchmark algorithm, we computed the required
time parameters τ and tcomm to meet the guarantees of δ =
0.1 (equivalent to the Bayesian pc = 0.9) and ε = 0.04,
which matches the most difficult environment (f = 0.52).

Because the robots’ random walk is highly correlated
relative to the grid cell size, an upper bound on τ is calculated
from the expected time to cross a grid cell. Given a robot
speed of 1 bodylength/s and grid cells of approximately 7×7
bodylengths, we selected τ = 10 s, which is the time to cross
a cell diagonally. From Eq. 4 have that S = 2,398 samples,
or 24 per robot, resulting in a Phase 1 duration of 240 s.

We computed tmeet empirically, because it depends on
environment- and robot-specific factors. To match the worst
expected meeting time across all possible starting positions,
we placed two robots in opposite corners of the arena with
random orientation. Over 5,000 trials, we computed the mean
time for the robots to first communicate as 1,151 s. From Eq.
5, we therefore set a Phase 2 duration of tcomm = 26,503 s.
We conducted 100 trials with these parameters.

V. RESULTS

We assess the success of the Bayesian decision-making
algorithm by considering the speed vs. accuracy trade-off
across our parameter sweep. We treat decision-making as
a multi-objective optimization problem by comparing the
accuracy of decision-making vs. the time for all robots
complete decisions in each parameter condition. The optimal
parameter selections are those that lie along the Pareto
frontier of accuracy and decision time.

We first consider the impact of positive feedback (u+)
in the most difficult environment, where the fill ratio is the
most ambiguous at f = 0.52. As shown in Fig. 2A, positive
feedback is essential for pushing the group to decisions, dra-
matically improving both the decision accuracy and speed. In
many conditions without positive feedback, the entire group
was unable to reach decisions within the 14 hour simulation
limit, while with positive feedback the worst decision time
was under 5 hours. One might expect positive feedback to
split the swarm into two groups, resulting in lower overall
accuracy; however, this occurs more when positive feedback
is not used, resulting in a collective accuracy consistently
below 70%. This is consistent with both previous robot
results in [3], [6], and the use of positive feedback in
biological collectives. As a comparison, we look at the bio-
inspired algorithm from [6] in the same environment. It lies
on the Pareto front, but many parameter choices for the
Bayesian algorithm achieve the same accuracy faster.
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Fig. 2. Speed and accuracy of Bayesian decision-making. Each point
represents the median time for all robots to reach a decision and median
accuracy of the resulting decisions, over all trials for a particular condition.
Ellipses show the 25–75th percentile in each dimension. The black line
shows the Pareto front of decision time vs. accuracy. Each successive figure
shows a subset of the data from the preceding one. A: For a fill ratio of
0.52, decisions were faster and more accurate when positive feedback was
used. Comparing to results from [6], certain parameter choices were faster
while maintaining high accuracy. The benchmark algorithm exceeded its
accuracy guarantees but was slower than comparatively accurate Bayesian
parameter combinations. B: Longer intervals between observations counter-
intuitively resulted in more optimal decisions (showing u+ = True). C:
Lower credible thresholds save time with minimal accuracy cost (showing
τ ≥ 15). D: Lower credible thresholds are effective only if a regularizing
prior prevents premature decisions (showing pc ∈ {0.9, 0.99} on left and
right, respectively).
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Fig. 3. Analogous plot to Fig. 2B for a fill ratio of 0.8. On the same
timescale, decisions were significantly faster and more accurate in this easier
environment.

Focusing only on conditions where positive feedback is
used, we investigate the impact of the interval between
observations (τ ), shown in Fig. 2B. Somewhat surprisingly,
higher times between observations yields results closer to the
Pareto optimal front. While a shorter observation interval
yields more total observations, they are highly spatially
correlated. A longer interval results in fewer observations
but more mixing, therefore resulting in more representative
samples and more accurate decisions in a shorter time.

Given the benefits of positive feedback and longer obser-
vation intervals, we now look at the effect of credible thresh-
old (pc), shown in Fig. 2C. An intuitive pattern emerges
that higher credible thresholds produce higher accuracy, but
choosing the highest threshold of 0.99 can incur a large time
cost. In Fig. 2D, we see when this occurs by contrasting the
decision results for pc = 0.9 and pc = 0.99. Here it becomes
apparent that there is an interaction between the the choice
of prior and the credible threshold. When a sufficiently large
regularizing prior is used, the credible threshold can be low
because the prior prevents premature decisions.

The benchmark algorithm consistently exceeded its 90%
accuracy guarantee, as seen in Fig. 2A. The high ratio
of time spent communicating vs. observing also underlines
the previously-observed benefit of collecting fewer, less
correlated samples. However, meeting this algorithm’s worst
case guarantees incurs a time cost in comparison to many
Bayesian parameter configurations. It requires sufficient time
for enough direct pairwise robot communications, rather than
forming a multi-hop network by re-transmitting observa-
tions. However, this accurately reflects the constraints in the
modeled robot system, whether bandwidth limitations and
channel capacity prevent effective re-communication. Fig. 3
also shows that the Bayesian algorithm is adaptively faster
in an easier environment, with f = 0.8. The benchmark
algorithm performed perfectly, but still took 26,743 s (≈
7.5 hours) for all robots to reach a decision, because its fixed
time is determined by the most difficult fill ratio.

VI. CONCLUSIONS AND FUTURE WORK

We have introduced a decentralized Bayesian algorithm
(Alg. 1) that allows simple, sparsely spaced robots to achieve

accurate classifications of an environmental feature. With
well-selected parameters, the robots were able to achieve this
go/no-go conclusion even when the difference between black
and white fill was only 4%. When the feature distinction was
greater, decision speed and accuracy significantly improved,
while becoming less sensitive to parameter choice. This
adaptability makes this approach suitable for applications
where little a priori knowledge is available about the feature
under consideration, in contrast with the benchmark algo-
rithm, where providing guarantees for the worst case requires
pre-selecting a longer decision time for all environments.
However, robots using the Bayesian algorithm do not know
whether others have made a decision, in contrast to the
guarantee of decisions after the benchmark’s fixed duration.

The Bayesian algorithm is also tunable; for example,
if an expected fill ratio is known, an informed prior can
be selected. If the accuracy requirements are lower in a
particular case, the credible threshold could be lowered to
speed up decisions. Positive feedback increasing decision
speed and accuracy also demonstrates that bio-inspiration can
be beneficial when used with statistically-grounded decision
models, rather than as an alternative approach.

We also showed that it is possible to create an algorithm
with accuracy guarantees for simple robots without knowing
the environment’s difficulty, but this incurred a trade-off in
total decision time, across all environment difficulties. The
benchmark algorithm’s guarantees may also be fragile in the
real world; for example, robot failure after starting would
violate the requirement of k robots and result in insufficient
observations. In practice, we have shown high accuracy
can be consistently achieved with the Bayesian algorithm,
without the explicit guarantees of the benchmark.

In future work, we plan to extend the Bayesian algo-
rithm to modularly construct a decision-making framework,
through the choice or robot communication and sampling.
The positive feedback used here represents a simple form of
informed communication, in which robots select information
to communicate to facilitate others’ decisions. With increased
communication bandwidth, robots could re-transmit mes-
sages to form a multi-hop network to speed the spread
of information. In addition, selecting what to subset of
information to communicate can help to solve decision-
making problems where noisy or probabilistic observations
limit the value of individual samples. Robots capable of lo-
calization would also be able to employ multi-agent adaptive
sampling to improve the utility of samples to input into
their distributions, improving on the Kilobots’ random walk.
Localization would also allow robots to solve target or source
localization problems. These extensions would make the
Bayesian decision-making algorithm applicable to a broad
class of spatially-distributed decision-making problems.
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