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Previous research on movement control suggested that humans exploit stability to reduce vulnera-
bility to internal noise and external perturbations. For interactions with complex objects, predictive
control based on an internal model of body and environment is needed to preempt perturbations
and instabilities due to delays. We hypothesize that stability can serve as means to render the com-
plex dynamics of the body and the task more predictable and thereby simplify control. However,
the assessment of stability in complex interactions with nonlinear and underactuated objects is chal-
lenging, as for existent stability analyses the system needs to be close to a (known) attractor. After
reviewing existing methods for stability analysis of human movement, we argue that contraction
theory provides a suitable approach to quantify stability or convergence in complex transient behav-
iors. To test its usefulness, we examined the task of carrying a cup of coffee, an object with internal
degrees of freedom. A simplified model of the task, a cart with a suspended pendulum, was imple-
mented in a virtual environment to study human control strategies. The experimental task was to
transport this cart-and-pendulum on a horizontal line from rest to a target position as fast as possible.
Each block of trials presented a visible perturbation, which either could be in the direction of motion
or opposite to it. To test the hypothesis that humans exploit stability to overcome perturbations,
the dynamic model of the free, unforced system was analyzed using contraction theory. A contrac-
tion metric was obtained by numerically solving a partial differential equation, and the contraction
regions with respect to that metric were computed. Experimental results showed that subjects indeed
moved through the contraction regions of the free, unforced system. This strategy attenuated the
perturbations, obviated error corrections, and made the dynamics more predictable. The advantages
and shortcomings of contraction analysis are discussed in the context of other stability analyses.
Published by AIP Publishing. https://doi.org/10.1063/1.5042090

The evaluation of stability in complex and transient
behaviors in human movement presents challenges as
extant stability analyses require a known attractor state.
We propose a variant of stability analysis, contraction
analysis, that is suitable for a manipulation task with
complex continuous dynamics. This differential method
of stability assessment does not require knowledge of
the attractor. We demonstrate this method on the con-
trol of a cart-and-pendulum system, a simple nonlinear
underactuated object, as proxy for the human task of
transporting a cup of coffee. Results show that humans
indeed exploit contraction regions to mitigate perturba-
tions and enhance predictability of the interaction with
the complex object. Using stability to enhance predictabil-
ity alleviates the need for an exact internal model. A
focus on stability, including analysis of contraction, can
advance the field of human movement science by allow-
ing scientists to address questions on complex movement
control.

a)Author to whom correspondence should be addressed:
s.bazzi@northeastern.edu

I. PREDICTABILITY AND STABILITY

Physical interaction with objects is ubiquitous in activi-
ties of everyday life, and humans show remarkable dexterity
in handling objects with different degrees of complexity. Rel-
atively simple examples that involve the manipulation of a
free rigid object include grasping, lifting a book, and turning
a key in a keyhole. In each case, the task involves mov-
ing a rigid object against a kinematic constraint. Physical
interaction becomes particularly intriguing when the objects
themselves have internal degrees of freedom that add complex
dynamics to the interaction. A daunting example is cracking a
whip: the flexible whip has infinitely many degrees of free-
dom that create challenging dynamics that the hand has to
control.1 A more mundane example is leading a cup of cof-
fee to one’s mouth to drink: the transporting hand applies a
force not only to the cup but also indirectly to the liquid that
acts back onto the hand and requires sensitive adjustments to
avoid spilling the coffee.2–5 In the face of external perturba-
tions or internal noise, further uncertainty and risk are added.
Nevertheless, humans are strikingly adept at interacting with
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a large variety of such objects, seemingly even without much
practice as we continuously encounter novel objects.

To date, most studies on object manipulation have
focused either on grip forces needed for transporting solid
objects or multi-digit grasping of a static object.6–9 It is
frequently assumed that humans use inverse dynamics and
acquire an internal model of their limbs, the object, and the
environment.10–14 For example, Gawthrop and colleagues15,16

simulated controlling an inverted pendulum as a model for
human balancing and showed that a non-predictive controller
was unable to explain how humans performed the task. Alter-
native controllers that included predictor feedback based on
an internal model were able to provide a better explanation.
Predicting the dynamics of the interaction is, therefore, impor-
tant since it allows one for planning the appropriate actions
accordingly.

However, for physically interactive tasks with objects
that exhibit nonlinear underactuated dynamics, a control strat-
egy that fully relies on an internal model appears unlikely
as exact predictions are challenging. Transporting a cup of
coffee creates complex fluid dynamics that act back onto the
hand and the applied force needs continuous regulation. Com-
pensating for inadequate prediction via feedback control is
insufficient as relatively long feedback delays in the neuro-
motor system can easily lead to instabilities. Therefore, we
hypothesize that instead of learning exact models, humans
learn to make their interactions more predictable such that
approximate models are sufficient.

Predictability is a large umbrella term that requires oper-
ationalization to afford quantitative assessment. The com-
putational literature developed several metrics to quantify
predictability and complexity of time series, for example,
mutual information and Kolmogorov entropy.17 In this study,
we argue that stability of a complex system is one important
avenue for the human control system to attain and enhance
predictability because a stable system can reject perturbations
and stay on its orbit.

Previous work has shown that humans tune into sta-
bility when the task affords such a strategy. For the task
of rhythmically bouncing a ball with a racket, Sternad and
colleagues demonstrated that the task afforded stability.18–21

Using model-derived criteria for stability, experimental results
showed that humans adopted a strategy that made the ball
trajectories stable. The benefit of this strategy is that exten-
sive error corrections are obviated as the system returns to
the stable orbit after (sufficiently small) perturbations, with-
out necessitating control. In the face of external perturbations
and human variability, a stable and robust strategy makes the
system more predictable.

Numerous studies have analyzed the (in-)stability and
control of an inverted pendulum as it presents a simple model
for postural control as well as a challenging skill when bal-
ancing a pole on one’s fingertip. Milton et al.22 and Insperger
and Milton23 used local linear stability analysis to explore the
robustness of different controllers for stick balancing in the
face of delay and sensory uncertainty. However, this analysis
method has to assume that the system is at a stable attrac-
tor state. This may be an incorrect assumption because the
authors also showed that the human controller did not stabilize

the upright position, i.e., it did not make it a fixed-point
attractor.22 Asai et al.24 examined postural control modeled
as an inverted pendulum. They showed that intermittent con-
trol of the inverted pendulum resulted in more robustness
as it created larger regions of stability. Research on human
locomotion has shown that walking has stability properties
consistent with our observations of how little attention is
required and how easily humans compensate for small uneven
support surfaces.25 Several studies used Lyapunov exponents
and Floquet multipliers to demonstrate degrees of stability in
healthy and clinical populations.26–28 In sum, there is a consid-
erable number of studies on stability in human behavior, but
they have been confined to only very few models that assumed
that the behavior was at steady state, either a fixed-point or
a closed orbit. Given the richness and complexity of human
behavior, it would also be useful to assess stability during a
transient point-to-point movement.

Four previous studies on transporting a cup of coffee,
modeled as a cart with a suspended pendulum, provided
empirical results that supported our hypothesis that humans
seek to make the system dynamics predictable.3,4,29,30 Using
the simplified model of a cup with a ball rolling inside, imple-
mented in a virtual environment, subjects moved the cup
without losing the ball, i.e., spilling the coffee. Predictabil-
ity was operationalized by a measure of the safety or energy
margin between the ball and the rim of the cup.3,4 Subjects
increased the safety margin which made the performance
less risky and, implicitly, more predictable. Two follow-up
studies on the same task examined continuous rhythmic per-
formance, where the nonlinear system exhibited significantly
more complex behavior.29,30 Subjects moved the cup and ball
at a given frequency but could choose their movement ampli-
tude. Predictability of the object dynamics was evaluated
by calculating the measure of mutual information between
the applied force and the object dynamics. Results showed
that subjects increased the mutual information, reflecting the
enhanced predictability of the object dynamics. The same
results were obtained in a complementary experiment, where
subjects could choose their frequency for a given amplitude.30

Despite these forays into assessing predictability and sta-
bility, there is a need for measures of stability that can be
applied to transient behaviors and more complex dynamics.
We propose that contraction analysis, a differential form of
stability analysis developed for nonlinear dynamical systems,
is an appropriate tool.31 Contraction analysis quantifies the
convergence or divergence of trajectories towards each other.
Due to the relative evaluation of trajectories, this method does
not require specific knowledge of the attractors of the sys-
tem or assume stability at the onset. In fact, it does not even
require the trajectory to be close to an attractor. It thereby dif-
fers from the strong assumptions of the Lyapunov analysis or
Floquet multipliers. Contraction regions are computed based
on a mathematical model of the task and are, therefore, inde-
pendent of the typical restrictions of human data, such as noise
and limited sampling rate.

This study examined stability or convergence in human
control of a complex object such as a cup of coffee. Despite
the dynamic complexity, some prediction of the complex
dynamics is needed, but a precise internal model of the
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sloshing coffee appears challenging. The hypothesis in this
study is that humans develop control strategies that estab-
lish stability or convergence to attain more predictability
in the interaction with the complex object. Specifically, we
examined human interaction with a simplified model of a two-
dimensional cup with a rolling ball in the presence of external
perturbations.

This task poses a control challenge absent in free move-
ments due to the nonlinear underactuated dynamics of the
rolling ball that introduces bidirectional forces.32 The simpli-
fied model of the task was rendered in a virtual environment
interfaced by a robotic manipulandum.33 The mathematical
model of a cart and pendulum was analyzed using contraction
theory. Human performance was evaluated against the calcu-
lated regions of convergence and divergence. Results show
that humans indeed sought the contraction regions. We inter-
pret these results to indicate that humans make the interactions
more predictable in order to obviate error corrections based on
a complex internal model.

II. EXISTING METHODS FOR STABILITY ANALYSIS OF
HUMAN MOVEMENT

Stability in human movements has been analyzed with
several mathematical tools that have advantages but cannot
be applied to a complex interactive task such as the one in
focus. To better appreciate the assumptions and limitations of
stability analysis and the opportunities of contraction analysis
for such complex and transient control tasks, a brief summary
of extant approaches to assess stability is provided.

A. Lyapunov exponents

The origins of the Lyapunov exponents method can be
traced back to Lyapunov’s linearization method, sometimes
referred to as Lyapunov’s first method.34 These exponents
are computed in a local linear stability analysis of trajec-
tories neighboring an attractor and they provide a measure
of the exponential rate of convergence/divergence of these
trajectories to the attractor.

Consider a n-dimensional autonomous dynamical system

ẋ = f (x), (1)

where x is a n-dimensional state vector. Let x(t) be a trajec-
tory of the system, starting at an initial condition x0 on the
attractor. Then, one can consider a neighboring trajectory y(t)
by applying a small perturbation ε0 to the initial condition.
The time evolution of the perturbation ε(t) is governed by the
equation

dε

dt
= J(x0)ε, (2)

where J(x0) is the n × n Jacobian matrix evaluated at x0. The
spectrum of Lyapunov exponents of the system is then defined
as

λi = lim
t→∞

1

t
ln

( |ε(t)|
|ε0|

)
, (3)

where i = 1, . . . , n. Since the state space is n-dimensional, n
initial perturbations can be applied, hence resulting in n dis-
tinct Lyapunov exponents. If at least one of the exponents is

positive, then that is an indicator of local instability, which is
a necessary condition for a chaotic attractor.

As can be seen from (3), computing a Lyapunov exponent
requires an infinitely long dataset. However, data collected
from human experiments are always restricted in length,
and frequently, one cannot observe and collect data for all
the state variables. Therefore, a number of algorithms have
been proposed to estimate the Lyapunov spectrum or the
largest Lyapunov exponent from a finite time-series.35,36 Since
Lyapunov exponents express the exponential rates at which
orbits in the vicinity of an attractor converge (or diverge),37

these algorithms first reconstruct the attractor from a finite
time-series using time-delayed copies of the measured state
variable.38 This renders the estimation of the Lyapunov expo-
nent sensitive to the chosen delay, the dimension in which the
time-series is embedded, and the ever-present noise in the col-
lected data. In fact, it has been shown that these algorithms can
yield incorrect estimates of negative exponents.39 Finally, for
methods using the largest Lyapunov exponent, it was shown
that a negative largest Lyapunov exponent does not necessar-
ily imply stability.40 This is commonly known as the Perron
effect.41

B. Poincaré maps and Floquet multipliers

Poincaré maps and Floquet Theory have been used to
assess the stability of periodic orbits, as typically encountered
in locomotor movements. Hurmuzlu and Basdogan used the
Poincaré maps and Floquet theory to assess the stability of
human locomotion,27 while Nomura et al.42 used these tools
to analyze how the stability of bipedal gaits depends on the
trajectories of the joint angles. The Floquet analysis is sim-
ilar to the Lyapunov exponents method in that it calculates
exponents using a local linearized map around the orbit to
quantify its stability. However, Floquet theory originally dealt
with deterministic linear systems. As human movement is
inherently nonlinear and stochastic, the validity of quantifying
stability of human walking using Floquet multipliers is ques-
tionable. For example, it has been shown that Floquet analysis
of a simple nonlinear walking model with stochastic noise
over-estimates orbital stability.43,44 In addition, human walk-
ing is not exactly periodic,45 and it has even been suggested
that it might not be a stable limit cycle.46

C. Variability analysis as proxy for stability

Many studies on human movement have used variabil-
ity as an inverse estimate of stability as it is well known
that experts have less variability, i.e., assumed to be more
stable. For example, in locomotion research, the variance
of the step cycle has been interpreted as a measure of gait
stability. Greater variability in stride-to-stride step length,47

stride-to-stride step width,48 and stride period49,50 has been
associated with less stability and higher risk for falls. How-
ever, low variability does not necessarily imply stability, and
in fact, the relation between the two is complex and task-
dependent. A study by Brach et al.51 found that both too
little and too much variability in step width were associated
with falling. Dingwell and Marin50 also showed that slower
walking speeds were associated with increased stability, even
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though stride-to-stride variability was larger. In redundant
tasks where there is a manifold of solutions for achieving
the task, variability only needs to be channeled into task-
irrelevant dimensions.52–54 Furthermore, seemingly random
variability may actually be the expression of a weak chaotic
attractor.55

Understanding coordination and control not only needs
evaluation of the outcome but also needs measures of the
process or the execution. For example, in targeted throw-
ing, the errors to the target are not the only reflection of
expertise. Variability of the process and the mapping of the
execution variables into the lower-dimensional result space
can serve as a window into the stability of the behavior.56 Sev-
eral lines of study have examined variability in the redundant
subspace or null space by mapping higher-dimensional exe-
cution into lower-dimensional result space. For example, the
uncontrolled manifold analysis (UCM) approach evaluates the
anisotropy of the variability in null space using the Jacobian
and its eigenvalues as a measure of stability.57,58 However, it
is important to point out that stability in the context of UCM
expresses the anisotropy of the variability and is not a measure
of robustness to perturbations. It is concerned with the degrees
of freedom that are primarily controlled by the nervous sys-
tem when performing a task. Moreover, the variability metric
within this framework is sensitive to the choice of coordinates
for the execution variables.59 It is also important to note that
the distributional properties of variability are task-dependent
and do not provide an absolute metric of stability.

D. Model-based local linear stability analysis

For cases where a continuous dynamical model is known,
one can analyze the stability properties of the equilibrium
points by evaluating the eigenvalues of the Jacobian of the
linearized system around the equilibrium points. This is Lya-
punov’s first method. If the Jacobian is strictly stable, i.e., all
eigenvalues are in the left-half of the complex plane, then the
equilibrium point is asymptotically stable. If the Jacobian is
unstable, i.e., at least one of the eigenvalues is in the right
half of the complex plane, then the equilibrium point is unsta-
ble. Finally, if the Jacobian is marginally stable, i.e., all the
eigenvalues are in the left half, but at least one of them lies on
the imaginary axis, then nothing can be concluded about the
equilibrium point. For discrete models, the eigenvalues must
lie inside the unit circle to indicate stability.

Sternad et al.18,19,60 used a local linear stability analysis
to investigate whether humans utilized principles of stabil-
ity when they rhythmically bounced a ball. Stability analysis
of a bouncing ball model identified conditions that indicated
stable behavior. These criteria were used to evaluate human
performance. Results revealed that humans indeed conformed
to these conditions and tuned into the stable behavior of the
task.

However, the model and the movement task was explic-
itly simple and low-dimensional. It is difficult to analyze more
complex tasks with continuous or hybrid dynamics and larger
state spaces, as local linear stability analysis of every equi-
librium point would be daunting. Moreover, it is possible

for model-based local linear stability analysis to be non-
conclusive, whenever the Jacobian is found to be marginally
stable.

To summarize, extant stability analyses require and
assume the behavior to be a steady-state closed orbit, a fixed-
point attractor, a limit cycle, etc. In this paper, we propose
a method for assessing stability of transient point-to-point
movements.

III. CONTRACTION THEORY

Contraction theory31 has fewer restrictions than previ-
ously described approaches, as it adopts a differential view
on stability of a nonlinear system by examining the conver-
gence or divergence of neighboring trajectories to each other.
It can, therefore, be applied to a larger variety of nonlinear
dynamical systems. It is important to note that contraction is a
strong form of stability, since it demands an exponential rate
of convergence.

A. Overview

Consider a nonlinear dynamical system

ẋ = f (x, t), (4)

where f is an n × 1 nonlinear vector function and x is the
n × 1 state vector. Let us look at two neighboring trajecto-
ries, x(t) and y(t), which are two solutions of (4) with initial
conditions x0 and y0, respectively. The virtual displacement is
an infinitesimal displacement, δx, between the trajectories at a
fixed time, as illustrated in Fig. 1.

From (4), an exact differential relation in the virtual
displacement can be derived as

δẋ = ∂f

∂x
(x, t)δx. (5)

The squared distance between the trajectories as time evolves
is governed by

d

dt
(δxTδx) = 2δxT ∂f

∂x
δx. (6)

This means that the virtual displacement ‖δx‖ converges
exponentially to zero if the Jacobian ∂f

∂x is uniformly nega-
tive definite. Regions in the state space in which this negative
definiteness property is satisfied are defined as contraction

FIG. 1. Virtual displacement between two neighboring trajectories.
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regions. For a uniformly negative definite Jacobian, the fol-
lowing holds

∃β > 0, ∀ x, ∀ t ≥ 0,
1

2

(
∂f

∂x
+ ∂f T

∂x

)
≤ −βI < 0. (7)

This means that for the Jacobian to be uniformly negative
definite, all the eigenvalues of its symmetric part must be uni-
formly negative definite. Note, however, that this is only a
sufficient condition for exponential convergence of the virtual
displacement.

A necessary and sufficient condition for exponential con-
vergence can be formulated by using a more general definition
of differential length. Let us take a continuously differentiable
coordinate transformation of the form

δz = �(x, t)δx, (8)

where �(x, t) is a square matrix that satisfies �T� > 0. � is
referred to as the contraction metric. In this new coordinate
frame, a contraction region is one that satisfies

1

2

(
K + KT

)
< 0, (9)

where K is the generalized Jacobian

K =
(

�̇ + �
∂f

∂x

)
�−1, (10)

meaning that all eigenvalues of the symmetric part of the
generalized Jacobian K must be uniformly negative definite.

To summarize, for a region of the state space to be con-
tracting, there must exist a metric �(x, t) such that �T� > 0
and 1

2 (K + KT ) < 0 over that region. Any trajectory entering
a ball of constant radius around another trajectory within a
contraction region remains in that ball and converges expo-
nentially to that trajectory.

It is important to mention that finding a suitable metric is
not trivial and can be the most challenging part of contraction
analysis. This study will use a method based on solving a par-
tial differential equation in the system dynamics to arrive at a
suitable metric.

B. Favorable properties of contraction analysis

To highlight the desirable attributes of contraction anal-
ysis, it is compared against the existing methods of stability
analysis as applied to human movement control. As shown
in the following, it is more versatile and suitable for move-
ments that are not at steady state, such as those involving
dynamically complex physical interactions.

1. Computations are precise

Computing contraction regions is solely based on cal-
culating the eigenvalues of the Jacobian of the dynamical
model. One can, therefore, establish with exact precision and
certainty whether or not a region of the state space is contract-
ing. Even if the contraction metric is found numerically, the
contraction regions with respect to that metric can be com-
puted exactly. In contrast, the Lyapunov exponent can only
be estimated using numerical methods and algorithms since,
mathematically speaking, Lyapunov exponents are only pre-
cise for infinite time series. The performance of these methods

depends on the delay and the embedding dimension. Numeri-
cal stability and sensitivity are, therefore, a big challenge for
an accurate estimation of the true Lyapunov exponent.

2. Stability estimates do not require a reference

Stability is typically referenced with respect to a nomi-
nal behavior; for instance, “stability of an equilibrium/fixed
point,” “stability of a periodic orbit,” “rate of convergence to
an attractor,” etc. But what if the observed behavior is not in
the vicinity of an attractor? What if there is no prior knowl-
edge of the attractor? This is the likely scenario for dexterous
behavior with dynamically complex physical interactions. It
is, therefore, useful to adopt a differential view of stability by
looking at whether or not nearby trajectories converge to each
other, irrespective of what behavior they converge to and irre-
spective of whether they are close to an attractor. This is what
contraction analysis does. “Reconstructing an attractor” is not
a requirement for the analysis.

3. Analysis does not rely on data that can be noisy

The algorithms used to calculate Lyapunov exponents
are sensitive to noise in the data and can, therefore, result
in wrong approximations of the Lyapunov exponent. In con-
trast, computing a contraction region is based on a model and
does not require any data input. The only limitation is that
the human behavior then needs to be sufficiently close to that
model.

4. Analysis does not require linearization

All existing methods for stability analysis require lin-
earization. For movements involving physical interaction and
perturbing forces, linearization is often not appropriate. Con-
traction analysis is based on the exact differential form (5) and
does not require any approximations or linearizations, as it
deals with the full model and its nonlinearities. It is, therefore,
more versatile and suitable for tasks involving interaction
forces and perturbations. It is important to note that while
(5) resembles a linearization, it is in fact an exact mathemat-
ical definition of the rate of change of virtual displacements
between neighboring trajectories at a fixed time.

5. Analysis can be applied to time-varying systems

For model-based local linear stability analysis, existing
theorems are only applicable for autonomous dynamical sys-
tems. As for non-autonomous systems, one can only deduce
stability of the nonlinear system if its linearization is uni-
formly asymptotically stable. Otherwise, no conclusions can
be drawn about the original nonlinear system. Contraction
analysis does not distinguish between autonomous and non-
autonomous systems, since convergence or divergence of
trajectories in a particular region of state space is dictated by
the eigenvalues of the Jacobian matrix, regardless of whether
or not it is a function of time.
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IV. THE EXPERIMENTAL TASK: TRANSPORTING A
CUP OF COFFEE

The action of carrying a cup of coffee is an everyday
example of a physical interaction with a dynamically complex
object. Moving the cup can cause sloshing of the coffee, which
in turn, exerts forces on the cup and the arm. Given the com-
plex internal dynamics and interaction forces, the question is
how humans control their interactions to ensure safe trans-
port. We hypothesize that humans create stable trajectories so
that perturbations have relatively little effect and require lit-
tle error correction.61 To examine this hypothesis, we tested
human performance in a virtual experiment that implemented
a simplified model of a cup of coffee. Human kinematic and
kinetic data were collected when interacting with this model
system.

In the experiment, human subjects transported a cup with
a ball rolling inside and moved it from an initial position to
a final position. Subjects were instructed to transport the cup
and ball as fast as possible without losing the ball, i.e., spilling
the coffee. To create an additional challenge, a visible small
hurdle on the line exerted a force either against the direc-
tion of movement (resistive) or in the direction of movement
(assistive) of the cup. The magnitude and direction of the per-
turbation were kept invariant across each block of trials so
that subjects could learn how best to prepare for the pertur-
bation. The hypothesis was that humans exploited contraction
regions to accommodate for these perturbations. We expected
that subjects would develop specific and distinct strategies for
the two types of perturbation.

A. A simplified model of the task dynamics

For the experiment, the realistic 3-dimensional cup with
the fluid dynamics of the sloshing coffee was reduced to a
2-dimensional arc and a ball rolling inside the arc. This sys-
tem was confined to move on a horizontal line. Under the
assumption that the ball does not roll and only slides with-
out friction along the cup, the dynamics of the system become
mathematically equivalent to the dynamics of the well-known
cart-pendulum system. Even though this model vastly sim-
plifies the full dynamics, the essential challenges of the task
were retained: underactuation and nonlinearity, where the lat-
ter could induce chaotic behavior. Figure 2(a) illustrates the
real and simplified task; Fig. 2(b) shows the dynamic model
of the simplified task.

The dynamics of the simplified model are

(m + M )ẍ(t) = lm
(
φ̇(t)2 sin[φ(t)] − φ̈(t) cos[φ(t)]

)
+ F(t) − bẋ(t), (11)

lφ̈(t) = −g sin[φ(t)] − Gẍ(t) cos[φ(t)], (12)

where x(t) denotes the horizontal position of the cart, φ(t)
is the pendulum angle measured counter-clockwise from the
vertical, m is the mass of the pendulum, M is the mass of
the cart, l is the length of the massless pendulum rod, and g is
the gravitational acceleration. The force applied by the human
subject is F(t). To ensure the existence of contraction regions,
the model should include some form of energy dissipation

FIG. 2. (a) The real task and the conceptual model. (b) The dynamical model.
(c) The virtual setup. The subject interacted with the object via a robotic
manipulandum and felt the perturbation when the cup passed over the visi-
ble bump, although the cup stayed on the horizontal line. (d) The display that
the subject saw on the screen. The distance between the start and target box
was 0.4 m.

from the system. This was achieved by adding damping in
the cup movement direction x, where the damping coefficient
is denoted by b. Physically, this damping may arise from the
human arm impedance or friction on the surface. To make the
task more challenging and to eliminate the trivial case where
the entire state space is a contraction region, the simulated
dynamics in the virtual environment incorporated a gain G
for the cup acceleration ẍ. This gain made the ball movement
more sensitive to the forces applied to the cup. For the simula-
tions and the experiment in the virtual environment, the model
parameters were fixed: M = 3.5 kg, m = 0.3 kg, l = 0.35 m,
b = 20 N s/m, and G = 5.

B. Virtual implementation of the task

This simplified model of the task dynamics was ren-
dered in a virtual environment using a robotic manipulandum
interfacing with the virtual object that provided subjects with
haptic feedback. Figure 2(c) illustrates the subject interact-
ing with the virtual object. A projection screen displayed the
cup (which corresponded to the cart) and the ball (which
corresponded to the pendulum bob), as depicted in Fig. 2(d).

Subjects were seated about 2 m in front of a large back-
projection screen (2.4 × 2.4 m). They physically interacted
with the object via a 3-degree-of-freedom robotic manipulan-
dum (HapticMaster, Motekforce, NL).33 By applying a force
to the handle of the robotic arm, participants controlled the
horizontal x position of the virtual cup. The robotic arm was
restricted to move only in the horizontal direction along the
subject’s frontal plane to ensure a unidirectional motion of
the cup. The robotic arm provided haptic feedback, allowing
participants to sense the object’s inertia, the force of the ball
on the cup, and the perturbations. The force applied by the
participants to the manipulandum F and the kinematics of the
cup and the ball x, ẋ, ẍ, φ, φ̇, φ̈ were recorded at 120 Hz.
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Participants were instructed to move the cup from the
start box on the left to the target box on the right as fast
as possible, while ensuring that the ball did not exceed the
rim of the cup and “escape.” A perturbation of magnitude
40 N, either in the direction of motion of the cup (assistive) or
against it (resistive) was applied at 60% of the travel distance.
The duration of this perturbation was 20 ms. The position of
the perturbation was visually displayed as a bump [Fig. 2(d)].
The subject knew the magnitude and direction of the perturba-
tion which give them the opportunity to learn how to navigate
this perturbation. For simplicity, the virtual cup remained on
the horizontal line and moved through the bump. All subjects
gave informed written consent before the experiment. The
protocol was approved by the Institutional Review Board of
Northeastern University.

The experiment consisted of 4 blocks. Block 1 comprised
60 trials without any perturbation to allow subjects to famil-
iarize themselves with the task. Blocks 2 and 4 comprised 60
trials each and involved a series of assistive or resistive per-
turbations. The order of resistive and assistive perturbations
was randomized. Block 3 presented 10 unperturbed trials to
separate the conditions of the two experimental blocks. At the
beginning of each trial, the cup was centered in the start box
and the ball rested at its equilibrium position at the bottom of
the cup.

V. CONTRACTION ANALYSIS

A. Contraction regions

The first step in computing the contraction regions of the
models (11) and (12) was to re-write the equations in state
space form. The state vector was taken to be X = (ẋ, φ, φ̇)T =
(x1, x2, x3)

T , and the resulting state space equations are

Ẋ =

⎛
⎜⎝

ẍ

φ̇

φ̈

⎞
⎟⎠ =

⎛
⎜⎝

ẋ1

ẋ2

ẋ3

⎞
⎟⎠ = f (X )

=

⎛
⎜⎜⎜⎜⎝

−bx1 + F + gm sin(x2) cos(x2) + lmx2
3 sin(x2)

−Gm cos2(x2) + m + M
x3

G cos(x2) (F − bx1) + g(m + M ) sin(x2) + Glmx2
3 sin(x2) cos(x2)

Glm cos2(x2) − l(m + M )

⎞
⎟⎟⎟⎟⎠ .

(13)

The Jacobian of the free unforced system (F = 0) is found to
be

J =

⎛
⎜⎜⎜⎜⎜⎝

1

0.08 cos2(x2) − 0.2
α − 0.1 sin(x2)x3

cos2(x2) − 2.5

0 0 1

1

0.01 sec(x2) − 0.005 cos(x2)
β

2 sin(2x2)x3

cos(2x2) − 4.07

⎞
⎟⎟⎟⎟⎟⎠

,

(14)

where

α = cos(x2)[0.04 cos(2x2) + 0.07]x2
3 + 4 cos(2x2) + 13.3 sin(2x2)x1 − 1[

2.5 − cos2(x2)
]2

(15)

and

β = γ − 91.1 cos(x2) − 17.8 cos(3x2) + [−530.2 sin(x2) − 47.6 sin(3x2)]x1[
2.5 − cos2(x2)

]2 ,

(16)

where

γ = [−2.03 cos(2x2) − 5.6 × 10−17 cos(4x2) + 0.5]x2
3.

(17)

A contraction region is defined where the symmetric part of
the Jacobian is uniformly negative definite. For this Jacobian,
no region in the state space was found such that the eigen-
values of its symmetric part Jsym were uniformly negative
definite. However, this did not rule out the existence of con-
traction regions, since negativity of Jsym is only a sufficient
condition.

The next step was to find a contraction metric �(X , t)
for which some regions of the state space were contracting.
To find a suitable metric that revealed the contraction regions,
the following partial differential equation was used31

∂�

∂X
f + �J = −�, (18)

where f was given in (13) and J was the Jacobian given
by (14). This partial differential equation was solved numer-
ically to obtain the contraction metric, which then enabled
the computation of the generalized Jacobian K from (10). To
deduce the contraction regions, the negativity condition (9)
was tested for points in the state space within the range

−0.2 ≤ ẋ ≤ 0.7; −1.5 ≤ φ ≤ 1.5; −6 ≤ φ̇ ≤ 6.

These boundaries were used since human subjects’ move-
ments were confined to this range. The points in the state
space that satisfied these condition were therefore contained
in a contraction region.

VI. RESULTS

We hypothesized that humans employed control strate-
gies that exploited contraction regions to diminish the effects
of perturbations. To test this hypothesis, the experimental tra-
jectories collected from four subjects were evaluated with
respect to the contraction regions.

A. Descriptive analysis of human data

Table I compares the average times required to com-
plete the task for 10 early and 10 late trials of each block,
along with one standard deviation. As to be expected, sub-
jects decreased the average time and their standard deviations
as they became more proficient in the late block. With very
few exceptions (1 out of 4 subjects during resistive pertur-
bations), this improvement was seen in all subjects and all
conditions.

The kinematic data from one representative subject is
presented in Fig. 3. The left column displays the cup veloc-
ity over the cup position for the three blocks; the second
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TABLE I. Average task completion times and standard deviations.

Subject 1 Subject 2 Subject 3 Subject 4

Baseline Early 1.92 s ± 0.45 1.77 s ± 0.45 3.05 s ± 0.42 1.88 s ± 0.47
Late 1.58 s ± 0.08 1.30 s ± 0.29 2.13 s ± 0.36 1.43 s ± 0.08

Assistive Early 2.09 s ± 0.45 1.56 s ± 0.53 2.18 s ± 0.45 1.61 s ± 0.46
Late 1.68 s ± 0.20 1.35 s ± 0.20 1.98 s ± 0.36 1.55 s ± 0.33

Resistive Early 2.35 s ± 0.12 1.32 s ± 0.27 3.09 s ± 0.80 1.71 s ± 0.50
Late 2.50 s ± 0.23 1.33 s ± 0.22 2.82 s ± 0.51 1.29 s ± 0.14

column presents the ball’s angular velocity over the cup posi-
tion for the same three blocks. The solid lines are the average
of the first 10 trials and the last 10 trials; the shaded band rep-
resents one standard deviation. Comparing the early with late
trials in the baseline and the two perturbation blocks makes
apparent that both cup and ball velocities exhibited a decrease
in variability. In the two perturbation blocks, the variability
of the cup and ball velocities was reduced at the moment
preceding the perturbation in the later trials. The two perturba-
tion types showed visible and different effects on the velocity
of both cup and ball. As expected, the assistive perturbation
increased the velocity transiently, while the resistive pertur-
bation decreased the velocity transiently. The profiles of the
cup trajectories also showed a change in later trials.

To evaluate whether subjects learnt to exploit the con-
traction regions, the data were analyzed against the calculated
contraction regions.

B. Evaluating human solutions against contraction
regions

1. Assistive perturbations

To test the hypothesis that subjects exploited the con-
traction regions in state space, the trajectories of cup and
ball were plotted in 3-dimensional state space. The calculated
regions of convergence are displayed as yellow-shaded vol-
umes in Fig. 4. The point P− denotes the instant just before
the perturbation while P+ denotes the instant just after the
perturbation. Note that even though the x-position of the per-
turbation remained fixed in the work space for all trials, the
positions of P− and P+ need not be fixed in state space, which
is spanned by φ, φ̇, and ẋ. Figure 4(a) illustrates one of the
early trials for one subject, while Fig. 4(b) displays one late
trial, both with an assistive perturbation. In the early trial,
the trajectory did not pass through any contraction region.

FIG. 3. Kinematic data for one of the
four subjects. The left column displays
cup velocity versus cup position for
the three different blocks of the experi-
ment. The right column plots ball angular
velocity versus cup position. The vertical
line indicates the position of the per-
turbation. The solid line represents the
average of the first 10 and last 10 trials
of the respective block; the shaded band
shows one standard deviation. The differ-
ent average trajectories and the reduced
variability in the late trials indicate learn-
ing. The markedly different trajectories
in the resistive and assistive perturba-
tions show that subjects developed differ-
ent strategies for the two perturbations.
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FIG. 4. Human trajectories when negotiating the assisting perturbation:
(a) Early trial: the subject did not exploit any contraction region. (b) Late
trial: the subject encountered the perturbation entirely inside a contraction
region. The black arrowhead indicates the starting point of the trajectory. P−

denotes the instant just before the perturbation, while P+ denotes the instant
after the perturbation. The exact ellipse indicates pendulum oscillations for
zero cup velocity at the target box.

However, with practice, the subject learnt to enter the con-
traction region just before the onset of the perturbation. This
caused the perturbation to occur within the contraction region,
thereby mitigating the destabilizing effect of the perturba-
tion. The same strategy was also observed in the three other
subjects.

2. Resistive perturbations

When the perturbations were resistive, subjects used a
different strategy [Fig. 5(a)]. In the early trials, subjects did
not approach any contraction region, similar to the assistive
perturbations. For the trial displayed in Fig. 5(a), the subject
failed to keep the ball in the cup, hence the trajectory ended
shortly after P+. However, as the subject learnt to navigate
the perturbations, they chose the perturbation onset such that
the subsequent segment of their trajectory passed through a
contraction region [Fig. 5(b)]. This attenuated the transient
effects of the perturbation. This pattern was again consistent
in the three other subjects. These observations supported the
hypothesis that humans sought convergent regions to stabilize
their trajectories against perturbations.

FIG. 5. Human trajectories for the condition with resisting perturbation: (a)
Early trial: in this trial, the subject dropped the ball from the cup, hence
the trajectory ends just after P+. (b) Late trial: the subsequent trajectory
after the perturbation entered a contraction region. The black arrowhead indi-
cates the starting point of the trajectory. P− denotes the instant just before the
perturbation, while P+ denotes the instant after the perturbation. The exact
ellipse indicates that the cup has reached the target box at rest, while the
pendulum was still oscillating.

VII. DISCUSSION

Augmenting human capabilities with tools is fundamen-
tal to our daily existence and is also a central research
objective in developing robotic manipulators and augmenting
devices.62,63 Yet to date, there is relatively little understand-
ing of how humans achieve their exquisite skill in handling
the vast variety of objects that extend their own bodies’
capabilities. To shed light on human control, more analysis
techniques are needed to reveal the intricate interaction with
such complex objects and their unique challenges. It is gen-
erally assumed that human control relies on internal models
of their own body, the objects, and their interaction with the
environment.10–14 However, these internal models are com-
plex and prediction of the resulting behavior can become
hard, if not impossible.1,29,61,64 Given the significant delays
and ubiquitous noise in the nervous system, even small errors
may amplify and severely disrupt and destabilize the inter-
action. We, therefore, reasoned that humans learn to interact
with objects by discovering and exploiting stability properties
of the system.18,61

However, stability analysis itself becomes challenging
(for the scientist) when the system is far from an attractor,
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which makes most current analysis methods inapplicable. Fol-
lowing a brief review of existent stability analyses as applied
to human movement, we suggested to use contraction anal-
ysis, which does not require the system to be close to an
equilibrium state. Using the well-known control task of trans-
porting a cart and a suspended pendulum, mimicking a cup
of sloshing coffee, we demonstrated how contraction analy-
sis can serve as a useful method to analyze human behavior.
We submit that compared to existing methods for stability
assessment, specifically in human motor control research,
contraction analysis is a valuable technique to study complex
interactions.

Based on a mathematical model of the task dynamics,
contraction analysis identifies regions in state space where
contraction is known to occur. This characterization then
serves as a basis to evaluate human trajectories in state
space and test whether humans are sensitive to these prop-
erties of the task dynamics. The current study revealed that
humans indeed developed specific strategies to stabilize their
performance. When facing assistive perturbations, the cup
trajectories entered a contraction region and stayed inside
throughout the duration of the perturbation. Hence, it can
be inferred that the convergent dynamics assisted in absorb-
ing the perturbation. In contrast, for resistive perturbations
subjects accessed a contraction region only after the per-
turbation. These observations indicated that, depending on
the perturbation type, subjects developed distinctive strate-
gies that exploited the dynamic properties of the task. It is
important to note that it is not clear whether these “prediction-
enhancing” control strategies are also the most stable or
the most energy-efficient ones or whether humans tradeoff
these different criteria. However, two earlier studies designed
experimental conditions that made these criteria mutually
exclusive. The results showed that subjects did not minimize
force but rather maximized predictability measured by mutual
information.29,30

This study used a greatly simplified model system as
proxy for the challenge of transporting an object with inter-
nal dynamics. However, it is important to point out that
contraction analysis is not limited to such low-dimensional,
deterministic, and accurate models. High-dimensional models
can likewise be analyzed within this framework. Contraction
analysis can also be applied to stochastic dynamical
systems.65 Moreover, even if the formulation of an accu-
rate model may become difficult and parameter values
become uncertain, contraction analysis is still applicable.
In contrast to the Lyapunov-based methods, contraction
analysis does not require tracking of the location of the
steady-state equilibria to study the robustness to parame-
ter perturbations and uncertainties. For example, Aylward
et al.66 used sums-of-squares programming methods to
find bounds on the maximum allowable uncertainty on the
parameters such that a given system remained contract-
ing with respect to the same contraction metric. For the
present task, an interesting next step could be to perform a
robustness analysis to examine how the contraction regions
change with parameter uncertainty and test whether or not
the trajectories still passed through the “new” contraction
regions.

It is necessary to point out that contraction represents a
strong form of stability as it implies an exponential rate of
convergence.67 While Lyapunov exponents and Floquet mul-
tipliers also quantify exponential stability, the model-based
local linear stability analysis only identifies asymptotic stabil-
ity. It may be argued that humans need not exhibit exponential
convergence and this requirement may be too conservative.
On the other hand, if such a behavior is identified, this can be
interpreted as a strong result.

While contraction theory provides numerous advan-
tages over existing methods for stability assessment of
human movement, it also suffers from some limitations.
One such limitation is that the analysis requires a math-
ematical model, whether precise or including parameter
uncertainties, to proceed with the analysis. This might not
be possible for certain tasks. The present study imple-
mented the simplified task model in a virtual environ-
ment which had the advantage that it exactly defines the
environment and exactly measured the human input. If
the task were examined in a real environment, additional
effects such as rolling friction would necessarily arise. Fur-
ther, a full 3D version of the task has more degrees of
freedom with interactions that may become hard to ade-
quately model. To maintain theoretical stringency, experi-
mental control and reduced complexity are, therefore, impor-
tant.

Another shortcoming of contraction analysis is that it
requires the specification of a metric to compute the contrac-
tion regions with respect to that metric. This is not a trivial
task and is similar in challenge to constructing a Lyapunov
function, where there is no systematic method for finding it.68

This study was able to solve a partial differential equation (18)
to arrive at a contraction metric. However, the existence of
solutions to this partial differential equation is not guaranteed
since it depends on the dynamical system under considera-
tion. Recently, inspired by the progress in sums-of-squares
optimization to compute Lyapunov functions,69 semi-definite
programming70 and sums-of-squares programming71 have
been used to search for contraction metrics. While beyond
the scope of this paper, it may be interesting to compare the
metrics that these different approaches may identify.

The choice of metric is also important for control design
in robotics. Recent work has shown that the existence of a
specific metric, known as the “control contraction metric”
(CCM), for a system implies the existence of a universally sta-
bilizing controller.72,73 In a separate study on sychronization
in biological systems, Aminzare74 derived metrics induced by
non-L2 norms, that proved relevant for contraction analysis of
a cellular biological process. The CCM and non-L2 induced
metrics could serve as an initial guess for a suitable metric.

One final limitation of contraction analysis is that the
choice of the metric can affect the conclusions made about
the subjects’ behavior. Different metrics may reveal differ-
ent contraction regions.67 One might initially find a metric
with contraction regions that did not intersect the human tra-
jectories, hence conclude that contraction was not exploited.
However, because contraction is both a necessary and suffi-
cient condition for exponential convergence, once a region has
been established as contracting with respect to some metric,
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other metrics might expand that contraction region but can-
not reduce it. The fact that the metric can be freely chosen
could also open an avenue to identify what metric and what
coordinates humans use to represent movement.59,75 Turn-
ing the hypothesis around and assuming that humans exploit
contraction regions, several metrics may be determined and
contrasted. The one that humans chose might reflect their
intrinsic reference metric.

VIII. CONCLUSIONS

We proposed contraction theory as a potential framework
for assessing stability of human movement in complex tasks.
The model task was a physical interaction with a dynamically
complex object, specifically moving a cup containing a rolling
ball through a perturbation. This task is not steady in nature
but rather transient. Contraction analysis is suitable for move-
ments that begin and terminate far from an equilibrium or
periodic steady state. The method, therefore, provides a new
promising tool to examine human movement.

The analysis gave first evidence that humans indeed
exploited contraction regions to accommodate perturba-
tions during dynamically complex physical interactions. By
traversing contraction regions, subjects mitigated the effects
of perturbations and avoided the potentially chaotic evolution
of the nonlinear dynamical system. This strategy overcame
control delays and noise and rendered task performance sta-
ble and more predictable. More predictable dynamics may
be more feasible for developing an internal model of the
task.
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